A semiparametric maximum likelihood estimator

被引:55
作者
Ai, CR
机构
关键词
Kernel; semiparametric; nonparametric; asymptotic efficiency;
D O I
10.2307/2171945
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper presents a procedure for analyzing a model in which the parameter vector has two parts: a finite-dimensional component theta and a nonparametric component lambda. The procedure does not require parametric modeling of lambda but assumes that the true density of the data satisfies an index restriction. The idea is to construct a parametric model passing through the true model and to estimate theta by setting the score for the parametric model to zero. The score is estimated nonparametrically and the estimator is shown to be root N consistent and asymptotically normal. The estimator is then shown to attain the semiparametric efficiency bound characterized in Begun et al. (1983) for multivariate nonlinear regression, simultaneous equations, partially specified regression, index regression, censored regression, switching regression, and disequilibrium models in which the error densities are unknown.
引用
收藏
页码:933 / 963
页数:31
相关论文
共 24 条
[1]  
AL C, 1994, J ECONOMETRICS, V62, P143
[2]  
ANDREWS DW, 1995, IN PRESS ECONOMETRIC
[3]   INFORMATION AND ASYMPTOTIC EFFICIENCY IN PARAMETRIC NONPARAMETRIC MODELS [J].
BEGUN, JM ;
HALL, WJ ;
HUANG, WM ;
WELLNER, JA .
ANNALS OF STATISTICS, 1983, 11 (02) :432-452
[4]   ON ADAPTIVE ESTIMATION [J].
BICKEL, PJ .
ANNALS OF STATISTICS, 1982, 10 (03) :647-671
[5]  
BIERENS HJ, 1985, ADV ECONOMETRICS 5TH, V1, P99
[6]   EFFICIENCY BOUNDS FOR SEMIPARAMETRIC REGRESSION [J].
CHAMBERLAIN, G .
ECONOMETRICA, 1992, 60 (03) :567-596
[7]   ASYMPTOTIC EFFICIENCY IN SEMIPARAMETRIC MODELS WITH CENSORING [J].
CHAMBERLAIN, G .
JOURNAL OF ECONOMETRICS, 1986, 32 (02) :189-218
[8]   SEMI-NONPARAMETRIC MAXIMUM-LIKELIHOOD-ESTIMATION [J].
GALLANT, AR ;
NYCHKA, DW .
ECONOMETRICA, 1987, 55 (02) :363-390
[9]   LARGE SAMPLE PROPERTIES OF GENERALIZED-METHOD OF MOMENTS ESTIMATORS [J].
HANSEN, LP .
ECONOMETRICA, 1982, 50 (04) :1029-1054
[10]  
Ichimura Hidehiko., 1991, NONPARAMETRIC SEMIPA, P3