Flagellin suppresses epithelial apoptosis and limits disease during enteric infection

被引:108
作者
Vijay-Kumar, Matam
Wu, Huixia
Jones, Rheinallt
Grant, George
Babbin, Brian
King, Timothy P.
Kelly, Denise
Gewirtz, Andrew T.
Neish, Andrew S.
机构
[1] Emory Univ, Sch Med, Dept Pathol & Lab Med, Epithelial Pathobiol Unit, Atlanta, GA 30322 USA
[2] Rowett Res Inst, Gut Immunol Grp, Aberdeen, Scotland
关键词
D O I
10.2353/ajpath.2006.060345
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
Flagellin, the primary component of bacterial flagella, is a potent activator of toll-like receptor 5 (TLR5) signaling and is a major proinflammatory determinant of enteropathogenic Salmonella. In accordance with this, we report here that aflagellate Salmonella mutants are impaired in their ability to upregulate proinflammatory and anti-apoptotic effector molecules in murine models of salmonellosis and that these mutants elicit markedly reduced early mucosal inflammation relative to their isogenic parent strains. Conversely, aflagellate bacteria were more potent activators of epithelial caspases and subsequent apoptosis. These phenomena correlated with a delayed but markedly exacerbated mucosal inflammation at the later stages of infection as well as elevated extraintestinal and systemic bacterial load, culminating in a more severe clinical outcome. Systemic administration of exogenous flagellin primarily reversed the deleterious effects of in vivo Salmonella infection. These observations indicate that in Salmonella infection, flagellin plays a dominant role in activation of not only innate immunity but also anti-apoptotic processes in epithelial cells. These latter TLR-mediated responses that delay epithelial apoptosis may be as critical to mucosal defense as the classic acute inflammatory response. This notion is consistent with the emerging paradigm that specific TLR ligands; may have a fundamental cytoprotective effect during inflammatory stress.
引用
收藏
页码:1686 / 1700
页数:15
相关论文
共 60 条
[1]   Decreased expression of toll-like receptor-4 and MD-2 correlates with intestinal epithelial cell protection against dysregulated proinflammatory gene expression in response to bacterial lipopolysaccharide [J].
Abreu, MT ;
Vora, P ;
Faure, E ;
Thomas, LS ;
Arnold, ET ;
Arditi, M .
JOURNAL OF IMMUNOLOGY, 2001, 167 (03) :1609-1616
[2]   Ways of dying: multiple pathways to apoptosis [J].
Adams, JM .
GENES & DEVELOPMENT, 2003, 17 (20) :2481-2495
[3]   Toll-like receptor signalling [J].
Akira, S ;
Takeda, K .
NATURE REVIEWS IMMUNOLOGY, 2004, 4 (07) :499-511
[4]   The role of flagella, but not fimbriae, in the adherence of Salmonella enterica serotype Enteritidis to chick gut explant [J].
Allen-Vercoe, E ;
Woodward, MJ .
JOURNAL OF MEDICAL MICROBIOLOGY, 1999, 48 (08) :771-780
[5]  
[Anonymous], 2002, BACTERIAL PATHOGENES, P539
[6]   Pretreatment of mice with streptomycin provides a Salmonella enterica serovar typhimurium colitis model that allows analysis of both pathogen and host [J].
Barthel, M ;
Hapfelmeier, S ;
Quintanilla-Martínez, L ;
Kremer, M ;
Rohde, M ;
Hogardt, M ;
Pfeffer, K ;
Rüssmann, H ;
Hardt, WD .
INFECTION AND IMMUNITY, 2003, 71 (05) :2839-2858
[7]  
Barton GM, 2002, CURR TOP MICROBIOL, V270, P81
[8]  
BOHNHOFF M, 1954, P SOC EXP BIOL MED, V86, P132, DOI 10.3181/00379727-86-21030
[9]   MEASUREMENT OF CUTANEOUS INFLAMMATION - ESTIMATION OF NEUTROPHIL CONTENT WITH AN ENZYME MARKER [J].
BRADLEY, PP ;
PRIEBAT, DA ;
CHRISTENSEN, RD ;
ROTHSTEIN, G .
JOURNAL OF INVESTIGATIVE DERMATOLOGY, 1982, 78 (03) :206-209
[10]   Dying for NF-κB?: Control of cell death by transcriptional regulation of the apoptotic machinery [J].
Burstein, E ;
Duckett, CS .
CURRENT OPINION IN CELL BIOLOGY, 2003, 15 (06) :732-737