The ultimate speed of magnetic switching in granular recording media

被引:243
作者
Tudosa, I
Stamm, C
Kashuba, AB
King, F
Siegmann, HC
Stöhr, J
Ju, G
Lu, B
Weller, D
机构
[1] Stanford Synchrotron Radiat Lab, Stanford, CA 94309 USA
[2] LD Landau Theoret Phys Inst, Moscow 117940, Russia
[3] Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA
[4] Seagate Technol LLC, Pittsburgh, PA 15222 USA
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
D O I
10.1038/nature02438
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In magnetic memory devices, logical bits are recorded by selectively setting the magnetization vector of individual magnetic domains either 'up' or 'down'. In such devices, the fastest and most efficient recording method involves precessional switching(1-4): when a magnetic field B-p is applied as a write pulse over a period tau, the magnetization vector precesses about the field until B(p)tau reaches the threshold value at which switching occurs. Increasing the amplitude of the write pulse B-p might therefore substantially shorten the required switching time tau and allow for faster magnetic recording. Here we use very short pulses of a very high magnetic field(5) to show that under these extreme conditions, precessional switching in magnetic media supporting high bit densities no longer takes place at well-defined field strengths; instead, switching occurs randomly within a wide range of magnetic fields. We attribute this behaviour to a momentary collapse of the ferromagnetic order of the spins under the load of the short and high-field pulse, thus establishing an ultimate limit to the speed of deterministic switching and magnetic recording.
引用
收藏
页码:831 / 833
页数:3
相关论文
共 14 条
[1]   Magnetization reversal in ultrashort magnetic field pulses [J].
Back, CH ;
Weller, D ;
Heidmann, J ;
Mauri, D ;
Guarisco, D ;
Garwin, EL ;
Siegmann, HC .
PHYSICAL REVIEW LETTERS, 1998, 81 (15) :3251-3254
[2]  
EBELS U, 2002, SPIN DYNAMICS CONFIN, V1, P178
[3]   Ultrafast precessional magnetization reversal by picosecond magnetic field pulse shaping [J].
Gerrits, T ;
van den Berg, HAM ;
Hohlfeld, J ;
Bär, L ;
Rasing, T .
NATURE, 2002, 418 (6897) :509-512
[4]   Comparison of experimental and numerical micromagnetic dynamics in coherent precessional switching and modal oscillations [J].
Hiebert, WK ;
Ballentine, GE ;
Freeman, MR .
PHYSICAL REVIEW B, 2002, 65 (14) :1404041-1404044
[5]  
Hillebrands B., 2002, SPIN DYNAMICS CONFIN
[6]   Precessional switching of submicrometer spin valves [J].
Kaka, S ;
Russek, SE .
APPLIED PHYSICS LETTERS, 2002, 80 (16) :2958-2960
[7]   Microwave oscillations of a nanomagnet driven by a spin-polarized current [J].
Kiselev, SI ;
Sankey, JC ;
Krivorotov, IN ;
Emley, NC ;
Schoelkopf, RJ ;
Buhrman, RA ;
Ralph, DC .
NATURE, 2003, 425 (6956) :380-383
[8]   High anisotropy CoCrPt(B) media for perpendicular magnetic recording [J].
Lu, B ;
Weller, D ;
Sunder, A ;
Ju, GP ;
Wu, XW ;
Brockie, R ;
Nolan, T ;
Brucker, C ;
Ranjan, R .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (10) :6751-6753
[9]   Femtosecond electron and spin dynamics in Ni/W(110) films -: art. no. 247201 [J].
Rhie, HS ;
Dürr, HA ;
Eberhardt, W .
PHYSICAL REVIEW LETTERS, 2003, 90 (24) :4-247201
[10]   Spin-wave dynamic magnetization reversal in a quasi-single-domain magnetic grain [J].
Safonov, VL ;
Bertram, HN .
PHYSICAL REVIEW B, 2001, 63 (09)