Riemannian symmetric superspaces and their origin in random-matrix theory

被引:483
作者
Zirnbauer, MR [1 ]
机构
[1] UNIV COLOGNE, INST THEORET PHYS, D-5000 COLOGNE, GERMANY
关键词
D O I
10.1063/1.531675
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Gaussian random-matrix ensembles defined over the tangent spaces of the large families of Cartan's symmetric spaces are considered. Such ensembles play a central role in mesoscopic physics, as they describe the universal ergodic limit of disordered and chaotic single-particle systems. The generating function for the spectral correlations of each ensemble is reduced to an integral over a Riemannian symmetric superspace in the limit of large matrix dimension. Such a space is defined as a pair (G/H,M(r)), where G/H is a complex-analytic graded manifold homogeneous with respect to the action of a complex Lie supergroup G, and M(r) is a maximal Riemannian submanifold of the support of G/H. (C) 1996 American Institute of Physics.
引用
收藏
页码:4986 / 5018
页数:33
相关论文
共 42 条
[1]   Random matrix theory of a chaotic Andreev quantum dot [J].
Altland, A ;
Zirnbauer, MR .
PHYSICAL REVIEW LETTERS, 1996, 76 (18) :3420-3423
[2]  
ALTLAND A, CONDMAT9602137
[3]   SUPERSYMMETRY APPLIED TO THE SPECTRUM EDGE OF RANDOM-MATRIX ENSEMBLES [J].
ANDREEV, AV ;
SIMONS, BD ;
TANIGUCHI, N .
NUCLEAR PHYSICS B, 1994, 432 (03) :487-517
[4]  
ANDREEV AV, CONDMAT9601001
[5]  
BARTOCCI C, 1991, GEOMETRY SUPERMANIFO
[6]  
Berezin F.A., 1987, MATH PHYS APPL MATH, V9
[7]  
Berezin F. A., 1975, SOV MATH DOKL, V16, P1218
[8]  
BREZIN E, 1984, SPRINGER LECT NOTES, V216, P115
[9]   Quantum transport in disordered wires: Equivalence of the one-dimensional sigma model and the Dorokhov-Mello-Pereyra-Kumar equation [J].
Brouwer, PW ;
Frahm, K .
PHYSICAL REVIEW B, 1996, 53 (03) :1490-1501
[10]   CORRELATIONS BETWEEN EIGENVALUES OF A RANDOM MATRIX [J].
DYSON, FJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1970, 19 (03) :235-&