Fast Prediction of Adsorption Properties for Platinum Nanocatalysts with Generalized Coordination Numbers

被引:383
作者
Calle-Vallejo, Federico [1 ]
Martinez, Jose I. [2 ]
Garcia-Lastra, Juan M. [3 ]
Sautet, Philippe [1 ]
Loffreda, David [1 ]
机构
[1] Univ Lyon, CNRS, ENS Lyon, Lab Chim, F-69364 Lyon 07, France
[2] ICMM CSIC, Dpto Superficies & Recubrimientos, Madrid 28049, Spain
[3] DTU, Dpt Energy Convers & Storage, DK-4000 Roskilde, Denmark
关键词
adsorption energy; coordination numbers; d-band center; nanoparticles; platinum; OXYGEN REDUCTION REACTION; AB-INITIO; PARTICLE-SIZE; NANOPARTICLES; CATALYSTS; ENERGIES; SURFACES;
D O I
10.1002/anie.201402958
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Platinum is a prominent catalyst for a multiplicity of reactions because of its high activity and stability. As Pt nanoparticles are normally used to maximize catalyst utilization and to minimize catalyst loading, it is important to rationalize and predict catalytic activity trends in nanoparticles in simple terms, while being able to compare these trends with those of extended surfaces. The trends in the adsorption energies of small oxygen- and hydrogen-containing adsorbates on Pt nanoparticles of various sizes and on extended surfaces were analyzed through DFT calculations by making use of the generalized coordination numbers of the surface sites. This simple and predictive descriptor links the geometric arrangement of a surface to its adsorption properties. It generates linear adsorption-energy trends, captures finite-size effects, and provides more accurate descriptions than d-band centers and usual coordination numbers. Unlike electronic-structure descriptors, which require knowledge of the densities of states, it is calculated manually. Finally, it was shown that an approximate equivalence exists between generalized coordination numbers and d-band centers.
引用
收藏
页码:8316 / 8319
页数:4
相关论文
共 26 条
[1]   Physical and Chemical Nature of the Scaling Relations between Adsorption Energies of Atoms on Metal Surfaces [J].
Calle-Vallejo, F. ;
Martinez, J. I. ;
Garcia-Lastra, J. M. ;
Rossmeisl, J. ;
Koper, M. T. M. .
PHYSICAL REVIEW LETTERS, 2012, 108 (11)
[2]   Structural and electronic properties of rhodium surfaces: An ab initio approach [J].
Eichler, A ;
Hafner, J ;
Furthmuller, J ;
Kresse, G .
SURFACE SCIENCE, 1996, 346 (1-3) :300-321
[3]   Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs [J].
Gasteiger, HA ;
Kocha, SS ;
Sompalli, B ;
Wagner, FT .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2005, 56 (1-2) :9-35
[4]  
Gross A, 2008, J COMPUT THEOR NANOS, V5, P894
[5]  
Hammer B, 2000, ADV CATAL, V45, P71
[6]   Using Photoelectron Spectroscopy and Quantum Mechanics to Determine d-Band Energies of Metals for Catalytic Applications [J].
Hofmann, Timo ;
Yu, Ted H. ;
Folse, Michael ;
Weinhardt, Lothar ;
Baer, Marcus ;
Zhang, Yufeng ;
Merinov, Boris V. ;
Myers, Deborah J. ;
Goddard, William A., III ;
Heske, Clemens .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (45) :24016-24026
[7]   Trends in CO Oxidation Rates for Metal Nanoparticles and Close-Packed, Stepped, and Kinked Surfaces [J].
Jiang, T. ;
Mowbray, D. J. ;
Dobrin, S. ;
Falsig, H. ;
Hvolbaek, B. ;
Bligaard, T. ;
Norskov, J. K. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (24) :10548-10553
[8]   Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals [J].
Kitchin, JR ;
Norskov, JK ;
Barteau, MA ;
Chen, JG .
JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (21) :10240-10246
[9]   Finite Size Effects in Chemical Bonding: From Small Clusters to Solids [J].
Kleis, J. ;
Greeley, J. ;
Romero, N. A. ;
Morozov, V. A. ;
Falsig, H. ;
Larsen, A. H. ;
Lu, J. ;
Mortensen, J. J. ;
Dulak, M. ;
Thygesen, K. S. ;
Norskov, J. K. ;
Jacobsen, K. W. .
CATALYSIS LETTERS, 2011, 141 (08) :1067-1071
[10]   Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J].
Kresse, G ;
Furthmuller, J .
PHYSICAL REVIEW B, 1996, 54 (16) :11169-11186