Boundary value problems for fractional diffusion equations

被引:445
作者
Metzler, R [1 ]
Klafter, J [1 ]
机构
[1] Tel Aviv Univ, Sch Chem, IL-69978 Tel Aviv, Israel
关键词
fractional diffusion equation; boundary value problems; Mittag-Leffler relaxation; anomalous diffusion; anomalous relaxation;
D O I
10.1016/S0378-4371(99)00503-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The fractional diffusion equation is solved for different boundary value problems, these being absorbing and reflecting boundaries in half-space and in a box. Thereby, the method of images and the Fouker-Laplace transformation technique are employed. The separation of variables is studied for a fractional diffusion equation with a potential term, describing a generalisation of an escape problem through a fluctuating bottleneck. The results lead to a further understanding of the fractional framework in the description of complex systems which exhibit anomalous diffusion. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:107 / 125
页数:19
相关论文
共 64 条
[1]  
Abramowitz M, 1968, HDB MATH FUNCTIONS
[2]   Subdiffusion and anomalous local viscoelasticity in actin networks [J].
Amblard, F ;
Maggs, AC ;
Yurke, B ;
Pargellis, AN ;
Leibler, S .
PHYSICAL REVIEW LETTERS, 1996, 77 (21) :4470-4473
[3]  
Aris R., 1975, The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts
[4]  
Aris Rutherford, 1975, The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts: The Theory of the Steady State, V1
[5]   Subdiffusion and anomalous local viscoelasticity in actin networks - Comment [J].
Barkai, E ;
Klafter, J .
PHYSICAL REVIEW LETTERS, 1998, 81 (05) :1134-1134
[6]   From continuous time random walks to the fractional Fokker-Planck equation [J].
Barkai, E ;
Metzler, R ;
Klafter, J .
PHYSICAL REVIEW E, 2000, 61 (01) :132-138
[7]  
BLUMEN A, 1986, OPTICAL SPECTROSCOPY
[8]   ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS [J].
BOUCHAUD, JP ;
GEORGES, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5) :127-293
[9]  
Carslaw H. S., 1959, CONDUCTION HEAT SOLI
[10]   Biased continuous time random walks between parallel plates [J].
Compte, A ;
Metzler, R ;
Camacho, J .
PHYSICAL REVIEW E, 1997, 56 (02) :1445-1454