Post-transcriptional regulation of cyclin D1 expression during G2 phase

被引:54
作者
Guo, Y [1 ]
Stacey, DW [1 ]
Hitomi, M [1 ]
机构
[1] Cleveland Clin Fdn, Lerner Res Inst, Dept Biol Mol, Cleveland, OH 44195 USA
关键词
cell cycle; Ras; cyclin D1; in situ hybridization; single cell-based analysis; post-transcriptional regulation;
D O I
10.1038/sj.onc.1205907
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
During continuous proliferation, cyclin D1 protein is induced to high levels in a Ras-dependent manner as cells progress from S phase to G2 phase. To understand the mechanism of the Ras-dependent cyclin D1 induction, cyclin D1 mRNA levels were determined by quantitative image analysis following fluorescent in situ hybridization. Although a slight increase in mRNA expression levels was detected during the S/G2 transition, this increase could not explain the more robust induction of cyclin D1 protein levels. This suggested the involvement of post-transcriptional regulation as a mechanism of cyclin D1 protein induction. To directly test this hypothesis, the cyclin D1 transcription rate was determined by run-on assays. The transcription rate of cyclin D1 stayed steady during the synchronous transition from S the G2 phase. We further demonstrated that cyclin D1 protein levels could increase during G2 phase in the absence of new mRNA synthesis. alpha-Amanitin, a transcription inhibitor, did not suppress cyclin D1 protein elevation as the cells progressed from S to G2 phase, even though the inhibitor was able to completely block cyclin D1 protein induction during reentry into the cell cycle from quiescence. The half life of cyclin D1 protein was shortest during S phase indicating that a change in protein stability might play a role in post-translational induction of cyclin D1 in G2 phase. These data indicate a fundamental difference in the regulation of cyclin D1 production during continuous cell cycle progression and re-initiation of the cell cycle.
引用
收藏
页码:7545 / 7556
页数:12
相关论文
共 57 条
[1]  
ADOLPH S, 1993, J CELL SCI, V105, P113
[2]   Distinct initiation and maintenance mechanisms cooperate to induce G1 cell cycle arrest in response to DNA damage [J].
Agami, R ;
Bernards, R .
CELL, 2000, 102 (01) :55-66
[3]   TRANSFORMING P21(RAS) MUTANTS AND C-ETS-2 ACTIVATE THE CYCLIN D1 PROMOTER THROUGH DISTINGUISHABLE REGIONS [J].
ALBANESE, C ;
JOHNSON, J ;
WATANABE, G ;
EKLUND, N ;
VU, D ;
ARNOLD, A ;
PESTELL, RG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (40) :23589-23597
[4]   Phosphorylation-dependent regulation of cyclin D1 nuclear export and cyclin D1-dependent cellular transformation [J].
Alt, JR ;
Cleveland, JL ;
Hannink, M ;
Diehl, JA .
GENES & DEVELOPMENT, 2000, 14 (24) :3102-3114
[5]  
Amanatullah DF, 2001, METHOD ENZYMOL, V333, P116
[6]   CYCLIN D1 IS A NUCLEAR-PROTEIN REQUIRED FOR CELL-CYCLE PROGRESSION IN G(1) [J].
BALDIN, V ;
LUKAS, J ;
MARCOTE, MJ ;
PAGANO, M ;
DRAETTA, G .
GENES & DEVELOPMENT, 1993, 7 (05) :812-821
[7]   PERK mediates cell-cycle exit during the mammalian unfolded protein response [J].
Brewer, JW ;
Diehl, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (23) :12625-12630
[8]   A signaling pathway to translational control [J].
Brown, EJ ;
Schreiber, SL .
CELL, 1996, 86 (04) :517-520
[9]  
DEGREGORI J, 1995, MOL CELL BIOL, V15, P4215
[10]   REGULATION OF HISTONE MESSENGER-RNA PRODUCTION AND STABILITY IN SERUM-STIMULATED MOUSE 3T6-FIBROBLASTS [J].
DELISLE, AJ ;
GRAVES, RA ;
MARZLUFF, WF ;
JOHNSON, LF .
MOLECULAR AND CELLULAR BIOLOGY, 1983, 3 (11) :1920-1929