Diversity of Planctomycetes in soil in relation to soil history and environmental heterogeneity

被引:166
作者
Buckley, Daniel H. [1 ]
Huangyutitham, Varisa [1 ]
Nelson, Tyrrell A. [1 ]
Rumberger, Angelika [1 ]
Thies, Janice E. [1 ]
机构
[1] Cornell Univ, Dept Crop & Soil Sci, Ithaca, NY 14853 USA
关键词
D O I
10.1128/AEM.00149-06
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Members of the Planctomycetes, which were once thought to occur primarily in aquatic environments, have been discovered in soils on five continents, revealing that these Bacteria are a widespread and numerically abundant component of microbial communities in soil. We examined the diversity of Planctomycetes in soil samples obtained from experimental plots at an agricultural site in order to assess the extent of Planctomycetes diversity in soil, to determine whether management effects such as past land cover and compost addition affected the composition of the Planctomycetes community, and to determine whether the observations made could provide insight into the ecological distribution of these organisms. Analysis of Planctomycetes 16S rRNA gene sequences revealed a total of 312 +/- 35 unique phylotypes in the soil at the site examined. The majority of these Planctomycetes sequences were unique, and the sequences had phylogenetic affiliations that included all major lineages in the Planctomycetaceae, as well as several novel groups of deeply divergent Planctomycetes. Both soil management history and compost amendment had significant effects on the Planctomycetes diversity, and variations in soil organic matter, Ca2+ content, and pH were associated with variations in the Planctomycetes community composition. In addition, Planctomycetes richness increased in proportion to the area sampled and was correlated with the spatial heterogeneity of nitrate, which was associated with the soil management history at the orchard site examined. This report provides the first systematic assessment of the diversity of Planctomycetes in soil and also provides evidence that the diversity of this group increases with area as defined by the general power law description of the taxon-area relationship.
引用
收藏
页码:4522 / 4531
页数:10
相关论文
共 69 条
[1]   PHYLOGENETIC IDENTIFICATION AND IN-SITU DETECTION OF INDIVIDUAL MICROBIAL-CELLS WITHOUT CULTIVATION [J].
AMANN, RI ;
LUDWIG, W ;
SCHLEIFER, KH .
MICROBIOLOGICAL REVIEWS, 1995, 59 (01) :143-169
[2]  
Axelrood PE, 2002, CAN J MICROBIOL, V48, P655, DOI [10.1139/w02-059, 10.1139/W02-059]
[3]   Archaea-like genes for C1-transfer enzymes in Planctomycetes:: Phylogenetic implications of their unexpected presence in this phylum [J].
Bauer, M ;
Lombardot, T ;
Teeling, H ;
Ward, NL ;
Amann, R ;
Glöckner, F .
JOURNAL OF MOLECULAR EVOLUTION, 2004, 59 (05) :571-586
[4]   Larger islands house more bacterial taxa [J].
Bell, T ;
Ager, D ;
Song, JI ;
Newman, JA ;
Thompson, IP ;
Lilley, AK ;
van der Gast, CJ .
SCIENCE, 2005, 308 (5730) :1884-1884
[5]   New approaches to analyzing microbial biodiversity data [J].
Bohannan, BJM ;
Hughes, J .
CURRENT OPINION IN MICROBIOLOGY, 2003, 6 (03) :282-287
[6]   Molecular microbial diversity of an agricultural soil in Wisconsin [J].
Borneman, J ;
Skroch, PW ;
OSullivan, KM ;
Palus, JA ;
Rumjanek, NG ;
Jansen, JL ;
Nienhuis, J ;
Triplett, EW .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1996, 62 (06) :1935-1943
[7]   Molecular microbial diversity in soils from eastern Amazonia: Evidence for unusual microorganisms and microbial population shifts associated with deforestation [J].
Borneman, J ;
Triplett, EW .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1997, 63 (07) :2647-2653
[8]   Diversity and dynamics of microbial communities in soils from agro-ecosystems [J].
Buckley, DH ;
Schmidt, TM .
ENVIRONMENTAL MICROBIOLOGY, 2003, 5 (06) :441-452
[9]   Analysis of broad-scale differences in microbial community composition of two pristine forest soils [J].
Chatzinotas, A ;
Sandaa, RA ;
Schönhuber, W ;
Amann, R ;
Daae, FL ;
Torsvik, V ;
Zeyer, J ;
Hahn, D .
SYSTEMATIC AND APPLIED MICROBIOLOGY, 1998, 21 (04) :579-587
[10]   The enigmatic Planctomycetes may hold a key to the origins of methanogenesis and methylotrophy [J].
Chistoserdova, L ;
Jenkins, C ;
Kalyuzhnaya, MG ;
Marx, CJ ;
Lapidus, A ;
Vorholt, JA ;
Staley, JT ;
Lidstrom, ME .
MOLECULAR BIOLOGY AND EVOLUTION, 2004, 21 (07) :1234-1241