Nonlinearizable single-input control systems do not admit stationary symmetries

被引:32
作者
Respondek, W [1 ]
Tall, IA [1 ]
机构
[1] INSA, Math Lab, Inst Natl Sci Appl Rouen, F-76131 Mont St Aignan, France
关键词
symmetries; stationary symmetries; feedback; linearizable systems; odd systems;
D O I
10.1016/S0167-6911(01)00197-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The main result of the paper states that almost any analytic single-input control system, which is truly nonlinear, that is not feedback linearizable, with controllable linearization at an equilibrium point, does not admit any symmetry preserving that point. By almost any system, we mean that we exclude a small class of odd systems, that admit just one nontrivial symmetry conjugated to minus identity. The obtained results are based on a recent classification of nonlinear single-input systems under formal feedback. We also describe symmetries of feedback linearizable systems. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 20 条
[1]   ON DIFFERENTIAL-SYSTEMS WITH QUADRATIC IMPULSES AND THEIR APPLICATIONS TO LAGRANGIAN MECHANICS [J].
BRESSAN, A ;
RAMPAZZO, F .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1993, 31 (05) :1205-1220
[2]   FLATNESS AND DEFECT OF NONLINEAR-SYSTEMS - INTRODUCTORY THEORY AND EXAMPLES [J].
FLIESS, M ;
LEVINE, J ;
MARTIN, P ;
ROUCHON, P .
INTERNATIONAL JOURNAL OF CONTROL, 1995, 61 (06) :1327-1361
[3]   SYMMETRY AND THE IMPLEMENTATION OF FEEDBACK LINEARIZATION [J].
GARDNER, RB ;
SHADWICK, WF .
SYSTEMS & CONTROL LETTERS, 1990, 15 (01) :25-33
[4]  
GARDNER RB, 1989, CONT MATH, V97, P115
[5]   THE STRUCTURE OF NONLINEAR CONTROL-SYSTEMS POSSESSING SYMMETRIES [J].
GRIZZLE, JW ;
MARCUS, SI .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1985, 30 (03) :248-258
[6]  
Hunt L., 1981, Proc. MTNS, Santa Monica, P119
[7]  
Jakubczyk B, 1980, Bull. Acad. Polon. Sci., V28, P517, DOI 10.12691/ajme-5-6-13
[8]  
JAKUBCZYK B, 1998, CANADIAN MATH C P, V25, P183
[9]  
JURDJEVIC V, 1995, GEOMETRY NONLINEAR C, V32, P261
[10]  
Jurdjevic V, 1997, GEOMETRY FEEDBACK OP, P257