Enhanced Harvesting of Red Photons in Nanowire Solar Cells: Evidence of Resonance Energy Transfer

被引:138
作者
Shankar, Karthik [1 ,2 ]
Feng, Xinjian [2 ]
Grimes, Craig A. [1 ,2 ]
机构
[1] Penn State Univ, Dept Elect Engn, University Pk, PA 16802 USA
[2] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA
关键词
energy transfer; dye-sensitized solar cells; photoelectrochemistry; titania; semiconductor; TiO2; rutile nanowires; nanowire arrays; arrays; light harvesting; PHOTOVOLTAIC CELLS; DYE; EFFICIENCIES; ARRAYS; DNA;
D O I
10.1021/nn900090x
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Modern excitonic solar cells efficiently harvest photons in the 350-650 nm spectral range; however, device efficiencies are typically limited by poor quantum yields for red and near-infrared photons. Using Forster-type resonance energy transfer from zinc phthalocyanine donor molecules to ruthenium polypyridine complex acceptors, we demonstrate a four-fold increase in quantum yields for red photons in dye-sensitized nanowire array solar cells. The dissolved donor and surface anchored acceptor molecules are not tethered to each other, through either a direct chemical bond or a covalent linker layer. The spatial confinement of the electrolyte imposed by the wire-to-wire spacing of the close-packed nanowire array architecture ensures that the distances between a significant fraction of donors and acceptors are within a Forster radius. The critical distance for energy transfer from an isolated donor chromophore to a self-assembled monolayer of acceptors on a plane follows the inverse fourth power instead of the inverse sixth power relation. Consequently, we observe near quantitative energy transfer efficiencies in our devices. Our results represent a new design paradigm in excitonic solar cells and show it is possible to more closely match the spectral response of the device to the AM 1.5 solar spectrum through use of electronic energy transfer.
引用
收藏
页码:788 / 794
页数:7
相关论文
共 26 条
[1]   Highly efficient phosphorescent emission from organic electroluminescent devices [J].
Baldo, MA ;
O'Brien, DF ;
You, Y ;
Shoustikov, A ;
Sibley, S ;
Thompson, ME ;
Forrest, SR .
NATURE, 1998, 395 (6698) :151-154
[2]   Electrical control of Forster energy transfer [J].
Becker, Klaus ;
Lupton, John M. ;
Mueller, Josef ;
Rogach, Andrey L. ;
Talapin, Dmitri V. ;
Weller, Horst ;
Feldmann, Jochen .
NATURE MATERIALS, 2006, 5 (10) :777-781
[3]   Pitfalls and limitations in the practical use of Forster's theory of resonance energy transfer [J].
Braslavsky, Silvia E. ;
Fron, Eduard ;
Rodriguez, Hernan B. ;
Roman, Enrique San ;
Scholes, Gregory D. ;
Schweitzer, Gerd ;
Valeur, Bernard ;
Wirz, Jakob .
PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES, 2008, 7 (12) :1444-1448
[4]   Energy transfer in hybrid quantum dot light-emitting diodes [J].
Chin, Patrick T. K. ;
Hikmet, Rifat A. M. ;
Janssen, Rene A. J. .
JOURNAL OF APPLIED PHYSICS, 2008, 104 (01)
[5]   OBSERVING THE HELICAL GEOMETRY OF DOUBLE-STRANDED DNA IN SOLUTION BY FLUORESCENCE RESONANCE ENERGY-TRANSFER [J].
CLEGG, RM ;
MURCHIE, AIH ;
ZECHEL, A ;
LILLEY, DMJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (07) :2994-2998
[6]   High-efficiency organic solar concentrators for photovoltaics [J].
Currie, Michael J. ;
Mapel, Jonathan K. ;
Heidel, Timothy D. ;
Goffri, Shalom ;
Baldo, Marc A. .
SCIENCE, 2008, 321 (5886) :226-228
[7]   Vertically Aligned Single Crystal TiO2 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis Details and Applications [J].
Feng, Xinjian ;
Shankar, Karthik ;
Varghese, Oomman K. ;
Paulose, Maggie ;
Latempa, Thomas J. ;
Grimes, Craig A. .
NANO LETTERS, 2008, 8 (11) :3781-3786
[8]   Photophysical and aggregation studies of t-butyl-substituted Zn phthalocyanines [J].
Fernandez, DA ;
Awruch, J ;
Dicelio, LE .
PHOTOCHEMISTRY AND PHOTOBIOLOGY, 1996, 63 (06) :784-792
[9]  
Foster T., 1959, DISCUSS FARADAY SOC, V27, P7
[10]  
HARDIN BE, 2008, USING LONG RANGE FOR