Regulation of the epithelial Na+ channel by Nedd4 and ubiquitination

被引:179
作者
Staub, O
Abriel, H
Plant, P
Ishikawa, T
Kanelis, V
Saleki, R
Horisberger, JD
Schild, L
Rotin, D
机构
[1] Hosp Sick Children, Cell Biol Programme, Toronto, ON M5G 1X8, Canada
[2] Univ Toronto, Dept Biochem, Toronto, ON, Canada
[3] Univ Lausanne, Inst Pharmacol & Toxicol, CH-1005 Lausanne, Switzerland
关键词
ENaC channels; PY motif; WW domain; C2; domain; ubiquitin protein ligase; Liddle's syndrome;
D O I
10.1046/j.1523-1755.2000.00919.x
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
The epithelial Na+ channel (ENaC) is comprised of three subunits, alpha, beta and gamma, and plays an essential role in Na+ and fluid absorption in the kidney, colon and lung. We had identified proline-rich sequences at the C termini of alpha beta gamma ENaC, which include the sequence PPxY, the PY motif. This sequence in beta or gamma ENaC is deleted or mutated in Liddle's syndrome, a hereditary form of arterial hypertension. Our previous work demonstrated that these PY motifs bind to the WW domains of Nedd4. a ubiquitin protein ligase containing a C2 domain, three or four WW domains and a ubiquitin protein ligrase Hect domain. Accordingly, we have recently demonstrated that Nedd4, regulates ENaC function by controlling the number of channels at the cell surface, that this regulation is impaired in ENaC bearing Liddle's syndrome mutations, and that ENaC stability and function are regulated by ubiquitination. The C2 domain is responsible for localizing Nedd4 to the plasma membrane in a Ca2+-dependent manner, and in polarized epithelial MDCK cells this localization is primarily apical. In accordance, electrophysiological characterization of ENaC expressed in MDCK cells revealed inhibition of channel activity by elevated intracellular Ca2+ levels. Thus, in response to Ca2+, Nedd4 may be mobilized to the apical membrane via its C2 domain, where it binds ENaC via Nedd4-WW:ENaC-PY motifs' interactions, leading to ubiquitination of the channel by the Nedd4-Hect domain and subsequent channel endocytosis and lysosomal degradation. This process may be at least partially impaired in Liddle's syndrome due to reduced Nedd4 binding, leading to increased retention of ENaC at the cell surface.
引用
收藏
页码:809 / 815
页数:7
相关论文
共 61 条
[1]   Defective regulation of the epithelial Na+ channel by Nedd4 in Liddle's syndrome [J].
Abriel, H ;
Loffing, J ;
Rebhun, JF ;
Pratt, JH ;
Schild, L ;
Horisberger, JD ;
Rotin, D ;
Staub, O .
JOURNAL OF CLINICAL INVESTIGATION, 1999, 103 (05) :667-673
[2]   WWP, A NEW AMINO-ACID MOTIF PRESENT IN SINGLE OR MULTIPLE COPIES IN VARIOUS PROTEINS INCLUDING DYSTROPHIN AND THE SH3-BINDING YES-ASSOCIATED PROTEIN YAP65 [J].
ANDRE, B ;
SPRINGAEL, JY .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1994, 205 (02) :1201-1205
[3]   FBP WW domains and the Abl SH3 domain bind to a specific class of proline-rich ligands [J].
Bedford, MT ;
Chan, DC ;
Leder, P .
EMBO JOURNAL, 1997, 16 (09) :2376-2383
[4]   THE WW DOMAIN - A SIGNALING SITE IN DYSTROPHIN [J].
BORK, P ;
SUDOL, M .
TRENDS IN BIOCHEMICAL SCIENCES, 1994, 19 (12) :531-533
[5]   AMILORIDE-SENSITIVE EPITHELIAL NA+ CHANNEL IS MADE OF 3 HOMOLOGOUS SUBUNITS [J].
CANESSA, CM ;
SCHILD, L ;
BUELL, G ;
THORENS, B ;
GAUTSCHI, I ;
HORISBERGER, JD ;
ROSSIER, BC .
NATURE, 1994, 367 (6462) :463-467
[6]   MEMBRANE TOPOLOGY OF THE EPITHELIAL SODIUM-CHANNEL IN INTACT-CELLS [J].
CANESSA, CM ;
MERILLAT, AM ;
ROSSIER, BC .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 1994, 267 (06) :C1682-C1690
[7]   EPITHELIAL SODIUM-CHANNEL RELATED TO PROTEINS INVOLVED IN NEURODEGENERATION [J].
CANESSA, CM ;
HORISBERGER, JD ;
ROSSIER, BC .
NATURE, 1993, 361 (6411) :467-470
[8]   Mutations in subunits of the epithelial sodium channel cause salt wasting with hyperkalaemic acidosis, pseudohypoaldosteronism type 1 [J].
Chang, SS ;
Grunder, S ;
Hanukoglu, A ;
Rosler, A ;
Mathew, PM ;
Hanukoglu, I ;
Schild, L ;
Lu, Y ;
Shimkets, RA ;
NelsonWilliams, C ;
Rossier, BC ;
Lifton, RP .
NATURE GENETICS, 1996, 12 (03) :248-253
[9]   Air side performance of brazed aluminum heat exchangers [J].
Chang, YJ ;
Wang, CC .
JOURNAL OF ENHANCED HEAT TRANSFER, 1996, 3 (01) :15-28
[10]   THE WW DOMAIN OF YES-ASSOCIATED PROTEIN BINDS A PROLINE-RICH LIGAND THAT DIFFERS FROM THE CONSENSUS ESTABLISHED FOR SRC HOMOLOGY 3-BINDING MODULES [J].
CHEN, HI ;
SUDOL, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (17) :7819-7823