Reversible blockade of electron transport during ischemia protects mitochondria and decreases myocardial injury following reperfusion

被引:179
作者
Chen, Qun
Moghaddas, Shadi
Hoppel, Charles L.
Lesnefsky, Edward J.
机构
[1] Louis Stokes Vet Affairs Med Ctr, Med Serv, Cleveland, OH USA
[2] Case Western Reserve Univ, Dept Med, Div Cardiol, Cleveland, OH 44106 USA
[3] Case Western Reserve Univ, Div Clin Pharmacol, Cleveland, OH 44106 USA
[4] Case Western Reserve Univ, Sch Med, Dept Pharmacol, Cleveland, OH 44106 USA
关键词
D O I
10.1124/jpet.106.110262
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Cardiac mitochondria sustain damage during ischemia and reperfusion, contributing to cell death. The reversible blockade of electron transport during ischemia with amobarbital, an inhibitor at the rotenone site of complex I, protects mitochondria against ischemic damage. Amobarbital treatment immediately before ischemia was used to test the hypothesis that damage to mitochondrial respiration occurs mainly during ischemia and that protection of mitochondria during ischemia leads to decreased cardiac injury with reperfusion. Langendorff-perfused Fischer-344 rat hearts were treated with amobarbital (2.5 mM) or vehicle for 1 min immediately before 25 min of global ischemia. Both groups were reperfused for 30 min without additional treatment. Subsarcolemmal (SSM) and interfibrillar (IFM) populations of mitochondria were isolated after reperfusion. Ischemia and reperfusion decreased state 3 and increased state 4 respiration rate in both SSM and IFM. Amobarbital treatment protected oxidative phosphorylation measured following reperfusion and improved the coupling of respiration. Cytochrome c content measured in SSM and IFM following reperfusion decreased in untreated, but not in amobarbital-treated, hearts. H2O2 release from SSM and IFM isolated from amobarbital-treated hearts during reperfusion was markedly decreased. Amobarbital treatment before ischemia improved recovery of contractile function ( percentage of preischemic developed pressure: untreated 51 +/- 4%, n = 12; amobarbital 70 +/- 4%, n = 11, p < 0.01) and substantially reduced infarct size ( untreated 32 +/- 2%, n = 7; amobarbital 13 +/- 2%, n = 7, p < 0.01). Thus, mitochondrial damage occurs mainly during ischemia rather than during reperfusion. Reperfusion in the setting of preserved mitochondrial respiratory function attenuates the mitochondrial release of reactive oxygen species, enhances contractile recovery, and decreases myocardial infarct size.
引用
收藏
页码:1405 / 1412
页数:8
相关论文
共 39 条
[1]  
AMBROSIO G, 1993, J BIOL CHEM, V268, P18532
[2]   New concepts in reactive oxygen species and cardiovascular reperfusion physiology [J].
Becker, LB .
CARDIOVASCULAR RESEARCH, 2004, 61 (03) :461-470
[3]   Generation of superoxide in cardiomyocytes during ischemia before reperfusion [J].
Becker, LB ;
Vanden Hoek, TL ;
Shao, ZH ;
Li, CQ ;
Schumacker, PT .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 1999, 277 (06) :H2240-H2246
[4]   Inhibition of mitochondrial permeability transition prevents mitochondrial dysfunction, cytochrome c release and apoptosis induced by heart ischemia [J].
Borutaite, V ;
Jekabsone, A ;
Morkuniene, R ;
Brown, GC .
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2003, 35 (04) :357-366
[5]   Mitochondria in apoptosis of ischemic heart [J].
Borutaite, V ;
Brown, GC .
FEBS LETTERS, 2003, 541 (1-3) :1-5
[6]   Release of mitochondrial cytochrome c and activation of cytosolic caspases induced by myocardial ischaemia [J].
Borutaite, V ;
Budriunaite, A ;
Morkuniene, R ;
Brown, GC .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, 2001, 1537 (02) :101-109
[7]  
CHANCE B, 1963, J BIOL CHEM, V238, P418
[8]   Role of 4-hydroxynonenal in modification of cytochrome c oxidase in ischemia/reperfused rat heart [J].
Chen, JJ ;
Henderson, GI ;
Freeman, GL .
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2001, 33 (11) :1919-1927
[9]   Bid is cleaved by calpain to an active fragment in vitro and during myocardial ischemia/reperfusion [J].
Chen, M ;
He, HP ;
Zhan, SX ;
Krajewski, S ;
Reed, JC ;
Gottlieb, RA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (33) :30724-30728
[10]   Depletion of cardiolipin and cytochrome c during ischemia increases hydrogen peroxide production from the electron transport chain [J].
Chen, Q ;
Lesnefsky, EJ .
FREE RADICAL BIOLOGY AND MEDICINE, 2006, 40 (06) :976-982