Comparison of phospholipid fatty acid (PLFA) and total soil fatty acid methyl esters (TSFAME) for characterizing soil microbial communities

被引:128
作者
Drenovsky, RE
Elliott, GN
Graham, KJ
Scow, KM
机构
[1] Univ Calif Davis, Dept Land Air & Water Resources, Davis, CA 95616 USA
[2] Univ Wales, Inst Biol Sci, Aberystwyth SY23 3DA, Dyfed, Wales
[3] Univ Calif Davis, Dept Sci Biol, Davis, CA 95616 USA
关键词
fatty acid; PLFA; TSFAME; microbial community composition; biomarker;
D O I
10.1016/j.soilbio.2004.05.002
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Phospholipid fatty acid (PLFA) and total soil fatty acid methyl esters (TSFAME), both lipid-based approaches used to characterize microbial communities, were compared with respect to their reliable detection limits, extraction precision, and ability to differentiate agricultural soils. Two sets of soil samples, representing seven crop types from California's Central Valley, were extracted using PLFA and TSFAME procedures. PLFA analysis required 10 times more soil than TSFAME analysis to obtain a reliable microbial community fingerprint and total fatty acid content measurement. Although less soil initially was extracted with TSFAME, total fatty acid (FA) content g(-1) soil (DW) was more than 7-fold higher in TSFAME- versus PLFA-extracted samples. Sample extraction precision was much lower with TSFAME analysis than PLFA analysis, with the coefficient of variation between replicates being as much as 4-fold higher with TSFAME extraction. There were significant differences between PLFA- and TSFAME-extracted samples when biomarker pool sizes (mol% values) for bacteria, actinomycetes, and fungi were compared. Correspondence analysis (CA) of PLFA and TSFAME samples indicated that extraction method had the greatest influence on sample FA composition. Soil type also influenced FA composition, with samples grouping by soil type with both extraction methods. However, separate CAs of PLFA- and TSFAME extracted samples depicted strong differences in underlying sample groupings. Recommendations for the selection of extraction method are presented and discussed. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1793 / 1800
页数:8
相关论文
共 30 条
[1]   MICROBIAL COMMUNITY STRUCTURE AND PH RESPONSE IN RELATION TO SOIL ORGANIC-MATTER QUALITY IN WOOD-ASH FERTILIZED, CLEAR-CUT OR BURNED CONIFEROUS FOREST SOILS [J].
BAATH, E ;
FROSTEGARD, A ;
PENNANEN, T ;
FRITZE, H .
SOIL BIOLOGY & BIOCHEMISTRY, 1995, 27 (02) :229-240
[2]   The use of neutral lipid fatty acids to indicate the physiological conditions of soil fungi [J].
Baath, E .
MICROBIAL ECOLOGY, 2003, 45 (04) :373-383
[3]  
BLIGH EG, 1959, CAN J BIOCHEM PHYS, V37, P911
[4]   Determinants of soil microbial communities: Effects of agricultural management, season, and soil type on phospholipid fatty acid profiles [J].
Bossio, DA ;
Scow, KM ;
Gunapala, N ;
Graham, KJ .
MICROBIAL ECOLOGY, 1998, 36 (01) :1-12
[5]   IMPACT OF CARBON AND FLOODING ON THE METABOLIC DIVERSITY OF MICROBIAL COMMUNITIES IN SOILS [J].
BOSSIO, DA ;
SCOW, KM .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1995, 61 (11) :4043-4050
[6]   Impacts of carbon and flooding on soil microbial communities: Phospholipid fatty acid profiles and substrate utilization patterns [J].
Bossio, DA ;
Scow, KM .
MICROBIAL ECOLOGY, 1998, 35 (03) :265-278
[7]   Comparison of substrate utilization assay and fatty acid analysis of soil microbial communities [J].
Buyer, JS ;
Drinkwater, LE .
JOURNAL OF MICROBIOLOGICAL METHODS, 1997, 30 (01) :3-11
[8]   Short-term dynamics of nitrogen, microbial activity, and phospholipid fatty acids after tillage [J].
Calderón, FJ ;
Jackson, LE ;
Scow, KM ;
Rolston, DE .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 2001, 65 (01) :118-126
[9]   FATTY-ACID METHYL-ESTER (FAME) PROFILES AS MEASURES OF SOIL MICROBIAL COMMUNITY STRUCTURE [J].
CAVIGELLI, MA ;
ROBERTSON, GP ;
KLUG, MJ .
PLANT AND SOIL, 1995, 170 (01) :99-113
[10]   Changes in soil microbial community structure with tillage under long-term wheat-fallow management [J].
Drijber, RA ;
Doran, JW ;
Parkhurst, AM ;
Lyon, DJ .
SOIL BIOLOGY & BIOCHEMISTRY, 2000, 32 (10) :1419-1430