Robust data reconciliation and gross error detection: The modified MIMT using NLP

被引:39
作者
Kim, IW
Kang, MS
Park, SW
Edgar, TF
机构
[1] UNIV TEXAS, DEPT CHEM ENGN, AUSTIN, TX 78712 USA
[2] KONKUK UNIV, DEPT CHEM ENGN, SEOUL, SOUTH KOREA
[3] DOOSAN TECH CTR, YONGIN, SOUTH KOREA
[4] KAIST, DEPT CHEM ENGN, TAEJON, SOUTH KOREA
关键词
gross error detection; data reconciliation;
D O I
10.1016/S0098-1354(96)00304-3
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Modified Iterative Measurement Test (MIMT) gross error detection algorithm has been improved using nonlinear programming techniques to improve its robustness and performance. Both data reconciliation and estimation of gross errors in MIMT can utilize nonlinear programming (NLP) techniques. The algorithm has been tested on a CSTR example and shows improved robustness compared to existing gross error detection algorithms. Therefore this enhanced algorithm appears to be quite promising for data reconciliation and gross error detection of highly nonlinear processes in chemical engineering. (C) 1997 Elsevier Science Ltd.
引用
收藏
页码:775 / 782
页数:8
相关论文
共 15 条
[1]   ESTIMATION OF PARAMETERS IN NONLINEAR, IMPLICIT MODELS [J].
BRITT, HI ;
LUECKE, RH .
TECHNOMETRICS, 1973, 15 (02) :233-247
[2]   RECONCILIATION OF PROCESS FLOW-RATES BY MATRIX PROJECTION .2. THE NONLINEAR CASE [J].
CROWE, CM .
AICHE JOURNAL, 1986, 32 (04) :616-623
[3]   RECONCILIATION OF PROCESS FLOW-RATES BY MATRIX PROJECTION .1. LINEAR CASE [J].
CROWE, CM ;
CAMPOS, YAG ;
HRYMAK, A .
AICHE JOURNAL, 1983, 29 (06) :881-888
[4]   ANALYSIS OF A COMPLEX PLANT-STEADY STATE AND TRANSIENT-BEHAVIOR [J].
HLAVACEK, V .
COMPUTERS & CHEMICAL ENGINEERING, 1977, 1 (01) :75-100
[5]   PERFORMANCE STUDIES OF THE MEASUREMENT TEST FOR DETECTION OF GROSS ERRORS IN PROCESS DATA [J].
IORDACHE, C ;
MAH, RSH ;
TAMHANE, AC .
AICHE JOURNAL, 1985, 31 (07) :1187-1201
[6]   STATISTICAL-ANALYSIS OF CONSTRAINED DATA SETS [J].
KNEPPER, JC ;
GORMAN, JW .
AICHE JOURNAL, 1980, 26 (02) :260-264
[7]  
Kuehn D.R., 1961, Chemical Engineering Progress, V57, P44
[8]  
LIEBMAN MJ, 1988, AICHE ANN M WASH DC
[9]  
MAH R, 1981, P ENG FDN C CHEM PRO, V2, P525
[10]   DETECTION OF GROSS ERRORS IN PROCESS DATA [J].
MAH, RSH ;
TAMHANE, AC .
AICHE JOURNAL, 1982, 28 (05) :828-830