Bioinformatic prediction and experimental validation of a microRNA-directed tandem trans-acting siRNA cascade in Arabidopsis

被引:160
作者
Chen, Ho-Ming
Li, Yi-Hang
Wu, Shu-Hsing [1 ]
机构
[1] Acad Sinica, Inst Plant & Microbial Biol, Taipei 11529, Taiwan
[2] Natl Chung Hsing Univ, Mol & Biol Agr Sci Program, Taiwan Inst Grad Program, Taipei 11529, Taiwan
[3] Acad Sinica, Taipei 11529, Taiwan
[4] Natl Chung Hsing Univ, Dept Life Sci, Taichung 402, Taiwan
关键词
massively parallel signature sequencing; TAS;
D O I
10.1073/pnas.0611119104
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Small RNAs play pivotal roles in regulating gene expression in higher eukaryotes. Among them, trans-acting siRNAs (ta-siRNAs) are a class of small RNAs that regulate plant development. The biogenesis of ta-siRNA depends on microRNA-targeted cleavage followed by the DCL4-mediated production of small RNAs phased in 21-nt increments relative to the cleavage site on both strands. To find TAS genes, we have used these characteristics to develop the first computational algorithm that allows for a comprehensive search and statistical evaluation of putative TAS genes from any given small RNA database. A search in Arabidopsis small RNA massively parallel signature sequencing (MPSS) databases with this algorithm revealed both known and previously unknown ta-siRNA-producing loci. We experimentally validated the biogenesis of ta-siRNAs from two PPR genes and the trans-acting activity of one of the ta-siRNAs. The production of ta-siRNAs from the identified PPR genes was directed by the cleavage of a TAS2derived ta-siRNA instead of by MicroRNAs as was reported previously for TASia, -b, -c, TAS2, and TAS3 genes. Our results indicate the existence of a small RNA regulatory cascade initiated by miR173-directed cleavage and followed by the consecutive production of ta-siRNAs from two TAS genes.
引用
收藏
页码:3318 / 3323
页数:6
相关论文
共 35 条
[1]   DRB4-dependent TAS3 trans-acting siRNAs control leaf morphology through AGO7 [J].
Adenot, Xavier ;
Elmayan, Taline ;
Lauressergues, Dominique ;
Boutet, Stéphanie ;
Bouché, Nicolas ;
Gasciolli, Virginie ;
Vaucheret, Hervé .
CURRENT BIOLOGY, 2006, 16 (09) :927-932
[2]  
Allen E, 2005, CELL, V121, P207, DOI 10.1016/j.cell.2005.04.004
[3]   A two-hit trigger for siRNA biogenesis in plants [J].
Axtell, Michael J. ;
Jan, Calvin ;
Rajagopalan, Ramya ;
Bartel, David P. .
CELL, 2006, 127 (03) :565-577
[4]   Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits rnicroRNAs and short interfering RNAs [J].
Baumberger, N ;
Baulcombe, DC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (33) :11928-11933
[5]   Detection of 91 potential in plant conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes [J].
Bonnet, E ;
Wuyts, J ;
Rouzé, P ;
Van de Peer, Y .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (31) :11511-11516
[6]   Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis [J].
Borsani, O ;
Zhu, JH ;
Verslues, PE ;
Sunkar, R ;
Zhu, JK .
CELL, 2005, 123 (07) :1279-1291
[7]   The diversity of RNA silencing pathways in plants [J].
Brodersen, Peter ;
Voinnet, Olivier .
TRENDS IN GENETICS, 2006, 22 (05) :268-280
[8]   microRNA biogenesis and function in plants [J].
Chen, XM .
FEBS LETTERS, 2005, 579 (26) :5923-5931
[9]   Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects developmental timing and patterning in Arabidopsis [J].
Fahlgren, Noah ;
Montgomery, Talowa A. ;
Howell, Miya D. ;
Allen, Edwards ;
Dvorak, Sarah K. ;
Alexander, Amanda L. ;
Carrington, James C. .
CURRENT BIOLOGY, 2006, 16 (09) :939-944
[10]   Specification of leaf polarity in Arabidopsis via the trans-acting siRNA pathway [J].
Garcia, Damien ;
Collier, Sarah A. ;
Byrne, Mary E. ;
Martienssen, Robert A. .
CURRENT BIOLOGY, 2006, 16 (09) :933-938