Reactions between La1-xCaxMnO3 and CaO-stabilized ZrO2 -: Part II -: Diffusion couples

被引:8
作者
Faaland, S [1 ]
Einarsrud, MA
Wiik, K
Grande, T
Hoier, R
机构
[1] Norwegian Univ Sci & Technol, Dept Chem, N-7491 Trondheim, Norway
[2] Norwegian Univ Sci & Technol, Dept Phys, N-7491 Trondheim, Norway
关键词
D O I
10.1023/A:1004766419921
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The chemical stability of diffusion couples and coarse grain powder mixtures of calcium substituted lanthanum manganite and cubic calcia stabilized zirconia have been studied. The aim was to investigate the chemical stability of these materials as a model system for respectively the cathode and the electrolyte in solid oxide fuel cells. With increasing amount of Ca in lanthanum manganite, the major secondary phase was shifted from La2Zr2O7 to CaZrO3, and the thickness of the reaction layers of secondary phases was increasing with increasing heat treatment time. Precipitation of La2O3 had taken place in the perovskite containing low amounts of Ca (0 and 20 mol %). The transport mechanisms of the cations were strongly dependent on the interface geometry. La0.7Ca0.3MnO3 was observed to give the most stable interface to zirconia both in air and in reducing atmosphere (p(O) similar to 10(-)6 atm). A-site deficiency of LaMnO3 was also observed to increase the stability. However, we conclude that a thin film of an electrode material consisting of lanthanum manganite on a zirconia substrate is unstable, regardless of A-site deficiency, because the solubility limit of Mn in the zirconia is not reached. From the experimental data, a reaction mechanism has been proposed, based on observations of relative diffusion rates. (C) 1999 Kluwer Academic Publishers.
引用
收藏
页码:5811 / 5819
页数:9
相关论文
共 25 条
[1]  
Carslaw H. S., 1959, CONDUCTION HEAT SOLI, V75, p[60, 112, 308]
[2]   Reactions at the calcium doped lanthanum chromite-yttria stabilized zirconia interface [J].
Carter, JD ;
Appel, CC ;
Mogensen, M .
JOURNAL OF SOLID STATE CHEMISTRY, 1996, 122 (02) :407-415
[3]   MICROSTRUCTURAL AND MICROCHEMICAL CHARACTERIZATION OF THE INTERFACE BETWEEN LA0.85SR0.15MNO3 AND Y2O3-STABILIZED ZRO2 [J].
CLAUSEN, C ;
BAGGER, C ;
BILDESORENSEN, JB ;
HORSEWELL, A .
SOLID STATE IONICS, 1994, 70 :59-64
[4]   Reactions between La1-xCaxMnO3 and CaO-stabilized ZrO2 -: Part I -: Powder mixtures [J].
Faaland, S ;
Einarsrud, MA ;
Wiik, K ;
Grande, T .
JOURNAL OF MATERIALS SCIENCE, 1999, 34 (05) :957-966
[5]   STABLE AND METASTABLE PHASE-RELATIONS IN THE SYSTEM ZRO2-CAO [J].
HELLMANN, JR ;
STUBICAN, VS .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1983, 66 (04) :260-264
[6]  
KANEKO H, 1991, P 2 INT S SOL OX FUE, P673
[7]  
Kleveland K, 1999, J AM CERAM SOC, V82, P729
[8]  
LAU SK, 1985, CORROSION 85, P79
[9]  
LOPATO LM, 1972, UKR KHIM ZH+, V38, P143
[10]  
MITTERDORFER A, 1996, P 2 EUR SOL OX FUEL, P373