Cadmium-induced sulfate uptake in maize roots

被引:120
作者
Nocito, FF [1 ]
Pirovano, L [1 ]
Cocucci, M [1 ]
Sacchi, GA [1 ]
机构
[1] Univ Milan, Dipartimento Prod Vegetale, I-20133 Milan, Italy
关键词
D O I
10.1104/pp.002659
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The effect of cadmium (Cd) on high-affinity sulfate transport of maize (Zea mays) roots was studied and related to the changes in the levels of sulfate and nonprotein thiols during Cd-induced phytochelatin (PC) biosynthesis. Ten micromolar CdCl2 in the nutrient solution induced a 100% increase in sulfate uptake by roots. This was, not observed either for potassium or phosphate uptake, suggesting a specific effect of Cd2+ on sulfate transport. The higher sulfate uptake was not dependent on a change in the proton motive force that energizes it. In fact, in Cd-treated plants, the transmembrane electric potential difference of root cortical cells was only slightly more negative than in the controls, the external pH did not change, and the activity of the plasma membrane H+-ATPase did not increase. Kinetics analysis showed that in the range of the high-affinity sulfate transport systems, 10 to 250 muM, Cd exposure did not influence the K-m value (about 20 muM), whereas it doubled the V-max value with respect to the control. Northern-blot analysis showed that Cd-induced sulfate uptake was related to a higher level of mRNA encoding for a putative high-affinity sulfate transporter in roots. Cd-induced sulfate uptake was associated to both a decrease in the contents of sulfate and glutathione and synthesis of a large amount of PCs. These results suggest that Cd-induced sulfate uptake depends on a pretranslational regulation of the high-affinity sulfate transporter gene and that this response is necessary for sustaining the higher sulfur demand during PC biosynthesis.
引用
收藏
页码:1872 / 1879
页数:8
相关论文
共 46 条
[1]   Coordinate modulation of maize sulfate permease and ATP sulfurylase mRNAs in response to variations in sulfur nutritional status: stereospecific down-regulation by L-cysteine [J].
Bolchi, A ;
Petrucco, S ;
Tenca, PL ;
Foroni, C ;
Ottonello, S .
PLANT MOLECULAR BIOLOGY, 1999, 39 (03) :527-537
[2]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[3]   Proteins for transport of water and mineral nutrients across the membranes of plant cells [J].
Chrispeels, MJ ;
Crawford, NM ;
Schroeder, JI .
PLANT CELL, 1999, 11 (04) :661-675
[4]   REGULATION OF SULFATE TRANSPORT IN A TROPICAL LEGUME, MACROPTILIUM-ATROPURPUREUM, CV SIRATRO [J].
CLARKSON, DT ;
SMITH, FW ;
VANDENBERG, PJ .
JOURNAL OF EXPERIMENTAL BOTANY, 1983, 34 (148) :1463-1483
[5]   Molecular mechanisms of plant metal tolerance and homeostasis [J].
Clemens, S .
PLANTA, 2001, 212 (04) :475-486
[6]   The glutathione-deficient, cadmium-sensitive mutant, cad2-1, of Arabidopsis thaliana is deficient in γ-glutamylcysteine synthetase. [J].
Cobbett, CS ;
May, MJ ;
Howden, R ;
Rolls, B .
PLANT JOURNAL, 1998, 16 (01) :73-78
[7]   Phytochelatins and their roles in heavy metal detoxification [J].
Cobbett, CS .
PLANT PHYSIOLOGY, 2000, 123 (03) :825-832
[8]   Functional analysis and cell-specific expression of a phosphate transporter from tomato [J].
Daram, P ;
Brunner, S ;
Persson, BL ;
Amrhein, N ;
Bucher, M .
PLANTA, 1998, 206 (02) :225-233
[9]   UPTAKE AND DISTRIBUTION OF CADMIUM IN MAIZE INBRED LINES [J].
FLORIJN, PJ ;
VANBEUSICHEM, ML .
PLANT AND SOIL, 1993, 150 (01) :25-32
[10]   THE EFFECTS OF CADMIUM ON THE FLUIDITY AND H+-ATPASE ACTIVITY OF PLASMA-MEMBRANE FROM SUNFLOWER AND WHEAT ROOTS [J].
FODOR, E ;
SZABONAGY, A ;
ERDEI, L .
JOURNAL OF PLANT PHYSIOLOGY, 1995, 147 (01) :87-92