Facultative mutualism between an herbivorous crab and a coralline alba: Advantages of eating noxious seaweeds

被引:106
作者
Stachowicz, JJ
Hay, ME
机构
[1] Univ. of N. Carolina at Chapel Hill, Institute of Marine Sciences, Morehead City, NC 28557
关键词
algal chemical defenses; competition; fouling; mutualism; plant-herbivore interaction;
D O I
10.1007/BF00328741
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Because encrusting coralline algae rely on herbivory or low light levels to prevent being overgrown by competitively superior fleshy algae, corallines are relatively rare in shallow areas with low rates of herbivory. In contrast to this general trend, the branching coralline alga Neogoniolithon strictum occurs primarily in shallow seagrass beds and along the margins of shallow reef flats where herbivory on macrophytes is low. This alga apparently persists in these habitats by providing refuge to the herbivorous crab Mithrax sculptus al mean densities of 1 crab per 75 g of algal wet mass. When crabs were removed from some host corallines, hosts without crabs supported 9 times the epiphytic growth of hosts with crabs after only 30 days. Crabs without access to a coralline alga were rapidly consumed by reef fishes, while most of those tethered near a host alga survived. These results suggest that the crabs clean their algal host of fouling seaweeds and associate with the host to minimize predation. However, to effectively clean the host, the crab must consume the wide array of macroalgae that commonly co-occur with coralline algae in these habitats, including chemically defended species in the genera Halimeda, Dictyota, and Laurencia. Crabs did readily consume these seaweeds, which were avoided by, and are chemically defended from, herbivorous fishes. Even though crabs readily consumed both Halimeda, and Dictyota in whole-plant feeding assays, chemical extracts from these species significantly reduced crab feeding, suggesting that factors other than secondary chemistry (e.g., food value, protein, energy content), may determine whole-plant palatability. Having the ability to use a wide variety of foods, and choosing the most profitable rather than the least defended foods, would diminish foraging time, increase site fidelity, and allow the crab to function mutualistically with the host alga. Despite the obvious benefit of associating with N. strictum, M. sculptus did not prefer it over other habitats offering a structurally similar refuge, suggesting that these crabs are not N. strictum specialists, but rather occupy multiple habitats that provide protection from predators. Structurally complex organisms like N. strictum may commonly suppress competitors by harboring protective symbionts like M. sculptus. It is possible that diffuse coevolution has occurred between these two groups; however, this seems unlikely because both herbivore and host appear to respond most strongly to selective pressures from predators and competitors outside this association.
引用
收藏
页码:377 / 387
页数:11
相关论文
共 109 条
[1]  
ADEY W H, 1975, Phycologia, V14, P55, DOI 10.2216/i0031-8884-14-2-55.1
[2]   STUDIES ON MAERL SPECIES PHYMATOLITHON-CALCAREUM (PALLAS) NOV COMB AND LITHOLTHAMNIUM-CORALLOIDES CROUAN IN RIA DE VIGO [J].
ADEY, WH ;
MCKIBLIN, DL .
BOTANICA MARINA, 1970, 13 (02) :100-&
[3]  
[Anonymous], 1981, Statistical Tables
[4]  
[Anonymous], HERBIVORES THEIR INT
[5]   THE EFFECTS OF GRAZING - CONFOUNDING OF ECOSYSTEM, COMMUNITY, AND ORGANISM SCALES [J].
BELSKY, AJ .
AMERICAN NATURALIST, 1987, 129 (05) :777-783
[6]  
BOLSER R, IN PRESS ECOLOGY
[7]  
BOSENCE DWJ, 1985, PALAEONTOLOGY, V28, P189
[8]  
BRANCH GM, 1992, PLANT ANIMAL INTERAC, V46, P405
[9]   THE EFFECT OF MICRO-GRAZERS ON ALGAL COMMUNITY STRUCTURE IN A CORAL-REEF MICROCOSM [J].
BRAWLEY, SH ;
ADEY, WH .
MARINE BIOLOGY, 1981, 61 (2-3) :167-177
[10]  
BRAWLEY SH, 1992, SYSTEMATICS ASS SPEC, V46, P235