Environmental effects of H2O on fracture initiation in silicon:: A hybrid electronic-density-functional/molecular-dynamics study

被引:41
作者
Ogata, S
Shimojo, F
Kalia, RK
Nakano, A
Vashishta, P
机构
[1] Yamaguchi Univ, Dept Appl Sci, Ube, Yamaguchi 7558611, Japan
[2] Kumamoto Univ, Dept Phys, Kumamoto 860, Japan
[3] Univ So Calif, Dept Mat Sci & Engn, Collaboratory Adv Comp & Simulat, Los Angeles, CA 90089 USA
[4] Univ So Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA
[5] Univ So Calif, Dept Comp Sci, Los Angeles, CA 90089 USA
[6] Univ So Calif, Dept Biomed Engn, Los Angeles, CA 90089 USA
关键词
D O I
10.1063/1.1689004
中图分类号
O59 [应用物理学];
学科分类号
摘要
A hybrid quantum-mechanical/molecular-dynamics simulation is performed to study the effects of environmental molecules on fracture initiation in silicon. A (110) crack under tension (mode-I opening) is simulated with multiple H2O molecules around the crack front. Electronic structure near the crack front is calculated with density functional theory. To accurately model the long-range stress field, the quantum-mechanical description is embedded in a large classical molecular-dynamics simulation. The hybrid simulation results show that the reaction of H2O molecules at a silicon crack tip is sensitive to the stress intensity factor K. For K=0.4 MPa.rootm, an H2O molecule either decomposes and adheres to dangling-bond sites on the crack surface or oxidizes Si, resulting in the formation of a Si-O-Si structure. For a higher K value of 0.5 MPa.rootm, an H2O molecule either oxidizes or breaks a Si-Si bond. (C) 2004 American Institute of Physics.
引用
收藏
页码:5316 / 5323
页数:8
相关论文
共 40 条
[1]  
[Anonymous], INHOMOGENEOUS ELECT
[2]   Real-space mesh techniques in density-functional theory [J].
Beck, TL .
REVIEWS OF MODERN PHYSICS, 2000, 72 (04) :1041-1080
[3]  
BRANDT A, 1977, MATH COMPUT, V31, P333, DOI 10.1090/S0025-5718-1977-0431719-X
[4]   Artificial Healing of Cone Cracks in Glass [J].
Cheeseman, G. L. ;
Lawn, B. R. .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 1970, 3 (04) :951-958
[5]   FINITE-DIFFERENCE-PSEUDOPOTENTIAL METHOD - ELECTRONIC-STRUCTURE CALCULATIONS WITHOUT A BASIS [J].
CHELIKOWSKY, JR ;
TROULLIER, N ;
SAAD, Y .
PHYSICAL REVIEW LETTERS, 1994, 72 (08) :1240-1243
[6]  
Chiang Y.M., 1997, PHYS CERAMICS
[7]  
CHUANG TJ, 1989, COMP MATER SCI, V70, P162
[8]   Towards grid-based O(N) density-functional theory methods:: Optimized nonorthogonal orbitals and multigrid acceleration [J].
Fattebert, JL ;
Bernholc, J .
PHYSICAL REVIEW B, 2000, 62 (03) :1713-1722
[9]  
Frenkel D., 1996, UNDERSTANDING MOL SI
[10]   Quantum mechanical methods for enzyme kinetics [J].
Gao, JL ;
Truhlar, DG .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 2002, 53 :467-505