Structural conservation in the major facilitator superfamily as revealed by comparative modeling

被引:82
作者
Vardy, E
Arkin, IT
Gottschalk, KE
Kaback, HR
Schuldiner, S [1 ]
机构
[1] Hebrew Univ Jerusalem, Alexander Silberman Inst Life Sci, IL-91904 Jerusalem, Israel
[2] Weizmann Inst Sci, Dept Biol Chem, IL-76100 Rehovot, Israel
[3] Univ Calif Los Angeles, Howard Hughes Med Inst, Dept Physiol & Microbiol, Inst Mol Biol, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Howard Hughes Med Inst, Dept Immunol, Inst Mol Biol, Los Angeles, CA 90095 USA
[5] Univ Calif Los Angeles, Howard Hughes Med Inst, Dept Mol Genet, Inst Mol Biol, Los Angeles, CA 90095 USA
关键词
membrane protein; ion-coupled transporters; drug resistance; NEM accessibility;
D O I
10.1110/ps.04657704
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The structures of membrane transporters are still mostly unsolved. Only recently, the first two high-resolution structures of transporters of the major facilitator superfamily (MFS) were published. Despite the low sequence similarity of the two proteins involved, lactose permease and glycerol-3-phosphate transporter, the reported structures are highly similar. This leads to the hypothesis that all members of the MFS share a similar structure, regardless of their low sequence identity. To test this hypothesis, we generated models of two other members of the MFS, the Tn10-encoded metal-tetracycline/H+ antiporter (TetAB) and the rat vesicular monoamine transporter (rVMAT2). The models are based on the two MFS structures and on experimental data. The models for both proteins are in good agreement with the data available and support the notion of a shared fold for all MFS proteins.
引用
收藏
页码:1832 / 1840
页数:9
相关论文
共 41 条
[1]   Structure and mechanism of the lactose permease of Escherichia coli [J].
Abramson, J ;
Smirnova, I ;
Kasho, V ;
Verner, G ;
Kaback, HR ;
Iwata, S .
SCIENCE, 2003, 301 (5633) :610-615
[2]   P-glycoprotein: from genomics to mechanism [J].
Ambudkar, SV ;
Kimchi-Sarfaty, C ;
Sauna, ZE ;
Gottesman, MM .
ONCOGENE, 2003, 22 (47) :7468-7485
[3]   QUANTIFICATION OF TERTIARY STRUCTURAL CONSERVATION DESPITE PRIMARY SEQUENCE DRIFT IN THE GLOBIN FOLD [J].
ARONSON, HEG ;
ROYER, WE ;
HENDRICKSON, WA .
PROTEIN SCIENCE, 1994, 3 (10) :1706-1711
[4]   Physiological genomics of antidepressant targets: Keeping the periphery in mind [J].
Blakely, RD .
JOURNAL OF NEUROSCIENCE, 2001, 21 (21) :8319-8323
[5]   Individual residues contribute to multiple differences in ligand recognition between vesicular monoamine transporters 1 and 2 [J].
Finn, JP ;
Edwards, RH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (26) :16301-16307
[6]   SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling [J].
Guex, N ;
Peitsch, MC .
ELECTROPHORESIS, 1997, 18 (15) :2714-2723
[7]   Structural model for 12-helix transporters belonging to the major facilitator superfamily [J].
Hirai, T ;
Heymann, JAW ;
Maloney, PC ;
Subramaniam, S .
JOURNAL OF BACTERIOLOGY, 2003, 185 (05) :1712-1718
[8]   Three-dimensional structure of a bacterial oxalate transporter [J].
Hirai, T ;
Heymann, JAW ;
Shi, D ;
Sarker, R ;
Maloney, PC ;
Subramaniam, S .
NATURE STRUCTURAL BIOLOGY, 2002, 9 (08) :597-600
[9]   Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli [J].
Huang, YF ;
Lemieux, MJ ;
Song, JM ;
Auer, M ;
Wang, DN .
SCIENCE, 2003, 301 (5633) :616-620
[10]   VMD: Visual molecular dynamics [J].
Humphrey, W ;
Dalke, A ;
Schulten, K .
JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 1996, 14 (01) :33-38