Interaction between the cellular prion (PrPC) and the 2P domain K+ channel TREK-1 protein

被引:15
作者
Azzalin, Alberto
Ferrara, Valentina
Arias, Agustina
Cerri, Silvia
Avella, Debora
Pisu, Maria Bonaria
Nano, Rosanna
Bernocchi, Graziella
Ferretti, Luca
Comincini, Sergio
机构
[1] Univ Pavia, Dipartimento Genet & Microbiol, I-27100 Pavia, Italy
[2] Univ Pavia, Dipartimento Biol Anim, I-27100 Pavia, Italy
关键词
prion protein; TREK-1; protein interaction;
D O I
10.1016/j.bbrc.2006.05.097
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The cellular prion protein (PrPC) is a highly conserved protein throughout the evolution of mammals and therefore is thought to play important cellular functions. Despite decades of intensive researches, the physiological function of PrPC remains enigmatic. Differently, in particular pathological contexts, generally referred as transmissible spongiform encephalopathies, a conformational isoform of PrPC, i.e., PrPSc, is considered the causative agent of these diseases. In this study, we investigated putative PrPC cellular functions through the identification of PrPC protein interactants. Using a bacterial two-hybrid approach, we identified a novel interaction between PrPC and a two-pore potassium channel protein, TREK-1. This interaction was further verified in transfected eukaryotic cells using co-immunoprecipitation and confocal microscopic analysis of the fluorescent transfected proteins. Importantly, in the cerebellar cortex, the endogenous PrPC and TREK-1 proteins exhibited co-localization signals in correspondence of the Purkinje cells. Furthermore, a deletion mapping study defined the carboxyl-terminal regions of the two proteins as the possible determinants of the PrPC-TREK-1 interaction. Our results indicated a novel PrPC interacting protein and suggested that this complex might be relevant in modulating a variety of electrophysiological-dependent cellular responses. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:108 / 115
页数:8
相关论文
共 52 条
[1]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[2]   TREK-2, a new member of the mechanosensitive tandem-pore K+ channel family [J].
Bang, H ;
Kim, Y ;
Kim, D .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (23) :17412-17419
[3]   SCRAPIE AND CELLULAR PRP ISOFORMS ARE ENCODED BY THE SAME CHROMOSOMAL GENE [J].
BASLER, K ;
OESCH, B ;
SCOTT, M ;
WESTAWAY, D ;
WALCHLI, M ;
GROTH, DF ;
MCKINLEY, MP ;
PRUSINER, SB ;
WEISSMANN, C .
CELL, 1986, 46 (03) :417-428
[4]   Antioxidant activity related to copper binding of native prion protein [J].
Brown, DR ;
Clive, C ;
Haswell, SJ .
JOURNAL OF NEUROCHEMISTRY, 2001, 76 (01) :69-76
[5]  
Brown DR, 2004, BIOCHEM SOC SYMP, V71, P193
[6]   The highways and byways of prion protein trafficking [J].
Campana, V ;
Sarnataro, D ;
Zurzolo, C .
TRENDS IN CELL BIOLOGY, 2005, 15 (02) :102-111
[7]  
CAPPAI R, 2004, CONTRIB MICROBIOL, V7, P32
[8]   Cellular prion protein transduces neuroprotective signals [J].
Chiarini, LB ;
Freitas, ARO ;
Zanata, SM ;
Brentani, RR ;
Martins, VR ;
Linden, R .
EMBO JOURNAL, 2002, 21 (13) :3317-3326
[9]   Hippocampal slices from prion protein null mice: Disrupted Ca2+-activated K+ currents [J].
Colling, SB ;
Collinge, J ;
Jefferys, JGR .
NEUROSCIENCE LETTERS, 1996, 209 (01) :49-52
[10]   PRION PROTEIN IS NECESSARY FOR NORMAL SYNAPTIC FUNCTION [J].
COLLINGE, J ;
WHITTINGTON, MA ;
SIDLE, KCL ;
SMITH, CJ ;
PALMER, MS ;
CLARKE, AR ;
JEFFERYS, JGR .
NATURE, 1994, 370 (6487) :295-297