Arabidopsis thaliana plants overexpressing thylakoidal ascorbate peroxidase show increased resistance to Paraquat-induced photooxidative stress and to nitric oxide-induced cell death

被引:273
作者
Murgia, I [1 ]
Tarantino, D
Vannini, C
Bracale, M
Carravieri, S
Soave, C
机构
[1] Univ Milan, Dipartimento Biol, Sez Fisiol & Biochim Piante, I-20122 Milan, Italy
[2] Univ Studi Insubria, Ist Biol Strutturale & Funz, Varese, Italy
关键词
Arabidopsis thaliana; ascorbate peroxidase; nitric oxide; oxidative stress; programmed cell death; thylakoids;
D O I
10.1111/j.1365-313X.2004.02092.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Ascorbate peroxidases (APX), localized in the cytosol, peroxisomes, mitochondria and chloroplasts of plant cells, catalyze the reduction of H2O2 to water by using ascorbic acid (ASA) as specific electron donor. The chloroplastic isoenzymes of APX are involved in the water-water cycle, which contributes to the photophosphorylation coupled to the photosynthetic electron transport. In order to better clarify the contribution of thylakoidal APX (tAPX) to the reactive oxygen species (ROS) scavenging activity, as well as to the fine modulation of ROS for signaling, we produced Arabidopsis lines overexpressing tAPX. These lines show an increased resistance to treatment with the O-2(-) generating herbicide Paraquat (Pq). However, when challenged with photoinhibitory treatments at high light or low temperature, or with iron (Fe) or copper (Cu) overload, the tAPX-overexpressing lines show no increased resistance with respect to controls, indicating that in such experimental conditions, tAPX overexpression does not reinforce plant defenses against the oxidative stresses tested. Interestingly, the nitric oxide (NO)-donor sodium nitroprusside (SNP) represses accumulation of tAPX transcript; SNP also partially inhibits tAPX enzymatic activity. After treatment with SNP, the tAPX-overexpressing lines show reduced symptoms of damage with respect to control plants treated with SNP. These transgenic lines confirm that H2O2 acts in partnership with NO in causing cell death and highlight the important role of tAPX in the fine modulation of H2O2 for signaling.
引用
收藏
页码:940 / 953
页数:14
相关论文
共 90 条
[1]   Use of transgenic plants to study antioxidant defenses [J].
Allen, RD ;
Webb, RP ;
Schake, SA .
FREE RADICAL BIOLOGY AND MEDICINE, 1997, 23 (03) :473-479
[2]   DISSECTION OF OXIDATIVE STRESS TOLERANCE USING TRANSGENIC PLANTS [J].
ALLEN, RD .
PLANT PHYSIOLOGY, 1995, 107 (04) :1049-1054
[3]   Reactive electrophile species activate defense gene expression in Arabidopsis [J].
Alméras, E ;
Stolz, S ;
Vollenweider, S ;
Reymond, P ;
Mène-Saffrané, L ;
Farmer, EE .
PLANT JOURNAL, 2003, 34 (02) :202-216
[4]  
ANDERSSON B, 1996, PHOTOSYNTHESIS ENV, P101
[5]   COPPER ENZYMES IN ISOLATED CHLOROPLASTS - POLYPHENOLOXIDASE IN BETA-VULGARIS [J].
ARNON, DI .
PLANT PHYSIOLOGY, 1949, 24 (01) :1-15
[6]   The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons [J].
Asada, K .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1999, 50 :601-639
[7]   ASCORBATE PEROXIDASE - A HYDROGEN PEROXIDE-SCAVENGING ENZYME IN PLANTS [J].
ASADA, K .
PHYSIOLOGIA PLANTARUM, 1992, 85 (02) :235-241
[8]   The water-water cycle as alternative photon and electron sinks [J].
Asada, K .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES B-BIOLOGICAL SCIENCES, 2000, 355 (1402) :1419-1430
[9]   Antisense suppression of 2-cysteine peroxiredoxin in arabidopsis specifically enhances the activities and expression of enzymes associated with ascorbate metabolism but not glutathione metabolism [J].
Baier, M ;
Noctor, G ;
Foyer, CH ;
Dietz, KJ .
PLANT PHYSIOLOGY, 2000, 124 (02) :823-832
[10]   NEW EVIDENCE SUGGESTS THAT THE INITIAL PHOTOINDUCED CLEAVAGE OF THE D1-PROTEIN MAY NOT OCCUR NEAR THE PEST SEQUENCE [J].
BARBATO, R ;
SHIPTON, CA ;
GIACOMETTI, GM ;
BARBER, J .
FEBS LETTERS, 1991, 290 (1-2) :162-166