The intrinsic electrostatic potential and the intermediate ring of charge in the acetylcholine receptor channel

被引:49
作者
Wilson, GG
Pascual, JM
Brooijmans, N
Murray, D
Karlin, A
机构
[1] Columbia Univ Coll Phys & Surg, Ctr Mol Recognit, New York, NY 10032 USA
[2] Columbia Univ Coll Phys & Surg, Dept Neurol, New York, NY 10032 USA
[3] Columbia Univ Coll Phys & Surg, Dept Biochem & Mol Biophys, New York, NY 10032 USA
[4] Columbia Univ Coll Phys & Surg, Dept Physiol & Cellular Biophys, New York, NY 10032 USA
关键词
nicotinic; mutagenesis; reaction kinetics; conductance; selectivity;
D O I
10.1085/jgp.115.2.93
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
A ring of aligned glutamate residues named the intermediate ring of charge surrounds the intracellular end of the acetylcholine receptor. channel and dominates cation conduction (Imoto et al., 1988). Four of the five subunits in mouse-muscle acetylcholine receptor contribute a glutamate to the ring. These glutamates were mutated to glutamine or lysine, and combinations of mutant and native subunits, yielding net ring charges of -1 to -4, were expressed in Xenopus laevis oocytes. In all complexes, the alpha subunit contained a Cys substituted for alpha Thr244, thr-ee residues away from the ring glutamate alpha Glu241. The rate constants for the reactions of alpha Thr244Cys with the neutral 2-hydroxyethyl-methanethiosulfonate, the positively charged 2-ammonioethyl-methanethiosulfonate, and the doubly positively charged 2-ammonioethyl-2'-ammonioethanethiosulfonate were determined from the rates of irreversible inhibition of the responses to acetylcholine. The reagents were added in the presence and absence of acetylcholine and at various transmembrane potentials, and the e-ate constants were extrapolated to zero transmembrane potential. The intrinsic electrostatic potential in the channel in the vicinity of the ring of charge was estimated from the ratios of the rate constants of differ-entry charged reagents. In the acetylcholine-induced open state, this potential was -230 mV with four glutamates in the ring and increased linearly towards 0 mV by +57 mV for each negative charge removed from the ring. Thus, the intrinsic electrostatic potential in the narrow intracellular end of the open channel is almost entirely due to the intermediate ring of charge and is strongly correlated with alkali-metal-ion conductance through the channel. The intrinsic electrostatic potential in the closed state of the channel was more positive than in the open state at all values of the ring charge. These electrostatic properties were simulated by theoretical calculations based on a simplified model of the channel.
引用
收藏
页码:93 / 106
页数:14
相关论文
共 44 条
[1]   Electrostatics and the ion selectivity of ligand-gated channels [J].
Adcock, C ;
Smith, GR ;
Sansom, MSP .
BIOPHYSICAL JOURNAL, 1998, 75 (03) :1211-1222
[2]   IDENTIFICATION OF ACETYLCHOLINE-RECEPTOR CHANNEL-LINING RESIDUES IN THE ENTIRE M2 SEGMENT OF THE ALPHA-SUBUNIT [J].
AKABAS, MH ;
KAUFMANN, C ;
ARCHDEACON, P ;
KARLIN, A .
NEURON, 1994, 13 (04) :919-927
[3]   ACETYLCHOLINE-RECEPTOR CHANNEL STRUCTURE PROBED IN CYSTEINE-SUBSTITUTION MUTANTS [J].
AKABAS, MH ;
STAUFFER, DA ;
XU, M ;
KARLIN, A .
SCIENCE, 1992, 258 (5080) :307-310
[4]   MOLECULAR DETERMINANTS OF CHANNEL FUNCTION [J].
ANDERSEN, OS ;
KOEPPE, RE .
PHYSIOLOGICAL REVIEWS, 1992, 72 (04) :S89-S158
[5]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[6]   MUTATIONS IN M2 ALTER THE SELECTIVITY OF THE MOUSE NICOTINIC ACETYLCHOLINE-RECEPTOR FOR ORGANIC AND ALKALI-METAL CATIONS [J].
COHEN, BN ;
LABARCA, C ;
DAVIDSON, N ;
LESTER, HA .
JOURNAL OF GENERAL PHYSIOLOGY, 1992, 100 (03) :373-400
[7]   Mutational analysis of the charge selectivity filter of the α7 nicotinic acetylcholine receptor [J].
Corringer, PJ ;
Bertrand, S ;
Galzi, JL ;
Devillers-Thiéry, A ;
Changeux, JP ;
Bertrand, D .
NEURON, 1999, 22 (04) :831-843
[8]  
CORRINGER PJ, 2000, IN PRESS ANN REV PHA
[9]  
DANI JA, 1989, J NEUROSCI, V9, P884
[10]   MONO-VALENT AND DIVALENT-CATION PERMEATION IN ACETYLCHOLINE-RECEPTOR CHANNELS - ION-TRANSPORT RELATED TO STRUCTURE [J].
DANI, JA ;
EISENMAN, G .
JOURNAL OF GENERAL PHYSIOLOGY, 1987, 89 (06) :959-983