The craniofacial phenotype of the Crouzon mouse: Analysis of a model for syndromic craniosynostosis using three-dimensional MicroCT

被引:62
作者
Perlyn, Chad A.
DeLeon, Valerie B.
Babbs, Christian
Govier, Daniel
Burell, Lance
Darvann, Tron
Kreiborg, Sven
Morriss-Kay, Gillian
机构
[1] Washington Univ, Sch Med, Dept Mol Biol, Div Plast Surg, St Louis, MO 63110 USA
[2] Johns Hopkins Univ, Ctr Funct Anat & Evolut, Baltimore, MD USA
[3] Univ Utah, Micro CT Imaging Facil, Salt Lake City, UT USA
[4] Univ Copenhagen, Sch Dent, Copenhagen, Denmark
[5] Univ Oxford, Dept Physiol Anat & Genet, Oxford, England
关键词
Crouzon syndrome; FGFR2; fibroblast growth factor receptor; mouse model; three-dimensional imaging;
D O I
10.1597/05-212
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
Objective: To characterize the craniofacial phenotype of a mouse model for Crouzon syndrome by a quantitative analysis of skull morphology in mutant and wild-type mice and to compare the findings with skull features observed in humans with Crouzon syndrome. Methods: MicroCT scans and skeletal preparations were obtained on previously described Fgfr2(C342Y/+) Crouzon mutant mice and wild-type mice at 6 weeks of age. Three-dimensional coordinate data from biologically relevant landmarks on the skulls were collected. Euclidean Distance Matrix Analysis was used to quantify and compare skull shapes using these landmark data. Results: Obliteration of bilateral coronal sutures was observed in 80% of skulls, and complete synostosis of the sagittal suture was observed in 70%. In contrast, fewer than 40% of lambdoid sutures were found to be fully fused. In each of the 10 Fgfr2(C342Y/+) mutant mice analyzed, the presphenoid-basisphenoid synchondrosis was fused. Skull height and width were increased in mutant mice, whereas skull length was decreased. Interorbital distance was also increased in Fgfr2(C342Y/+) mice as compared with wild-type littermates. Upper-jaw length was shorter in the Fgfr2(C342Y/+) mutant skulls, as was mandibular length. Conclusion: Skulls of Fgfr2(C342Y/+) mice differ from normal littermates in a comparable manner with differences between the skulls of humans with Crouzon syndrome and those of unaffected individuals. These findings were consistent across several regions of anatomic interest. Further investigation into the molecular mechanisms underlying the anomalies seen in the Crouzon mouse model is currently under way.
引用
收藏
页码:740 / 747
页数:8
相关论文
共 37 条
[1]   Morphological study of the femur in osteopetrotic (op/op) mice using microcomputed tomography [J].
Abe, S ;
Watanabe, H ;
Hirayama, A ;
Shibuya, E ;
Hashimoto, M ;
Ide, Y .
BRITISH JOURNAL OF RADIOLOGY, 2000, 73 (874) :1078-1082
[2]  
BURDI AR, 1986, CLEFT PALATE J, V23, P28
[3]  
CARINCI F, 1994, CLEFT PALATE-CRAN J, V31, P201, DOI 10.1597/1545-1569(1994)031<0201:CSCAAE>2.3.CO
[4]  
2
[5]  
Cohen Jr MM, 2000, CRANIOSYNOSTOSIS DIA, P361
[6]  
Cohen M. Michael Jr, 2004, P380
[7]   UPPER AND LOWER AIRWAY COMPROMISE IN THE APERT SYNDROME [J].
COHEN, MM ;
KREIBORG, S .
AMERICAN JOURNAL OF MEDICAL GENETICS, 1992, 44 (01) :90-93
[8]  
Crouzon O, 1912, Bull Mem Soc Med Hop Paris, V33, P545
[9]  
DeLeon VB, 2001, CLEFT PALATE-CRAN J, V38, P134, DOI 10.1597/1545-1569(2001)038<0134:TEONSO>2.0.CO
[10]  
2