A general modular framework for gene set enrichment analysis

被引:260
作者
Ackermann, Marit [2 ]
Strimmer, Korbinian [1 ]
机构
[1] Univ Leipzig, Inst Med Informat Stat & Epidemiol, D-04107 Leipzig, Germany
[2] Tech Univ Dresden, Ctr Biotechnol, D-01062 Dresden, Germany
来源
BMC BIOINFORMATICS | 2009年 / 10卷
关键词
EXPRESSION DATA; FUNCTIONAL-GROUPS; MICROARRAY DATA; GLOBAL TEST; ASSOCIATION; SCORES; TERMS;
D O I
10.1186/1471-2105-10-47
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Analysis of microarray and other high-throughput data on the basis of gene sets, rather than individual genes, is becoming more important in genomic studies. Correspondingly, a large number of statistical approaches for detecting gene set enrichment have been proposed, but both the interrelations and the relative performance of the various methods are still very much unclear. Results: We conduct an extensive survey of statistical approaches for gene set analysis and identify a common modular structure underlying most published methods. Based on this finding we propose a general framework for detecting gene set enrichment. This framework provides a meta-theory of gene set analysis that not only helps to gain a better understanding of the relative merits of each embedded approach but also facilitates a principled comparison and offers insights into the relative interplay of the methods. Conclusion: We use this framework to conduct a computer simulation comparing 261 different variants of gene set enrichment procedures and to analyze two experimental data sets. Based on the results we offer recommendations for best practices regarding the choice of effective procedures for gene set enrichment analysis.
引用
收藏
页数:20
相关论文
共 51 条
[1]  
ACKERMANN M, 2008, THESIS TU DORTMUND
[2]   Pathway analysis of Microarray data via regression [J].
Adewale, A. J. ;
Dinu, I. ;
Potter, J. D. ;
Liu, Q. ;
Yasui, Y. .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2008, 15 (03) :269-277
[3]   Improved scoring of functional groups from gene expression data by decorrelating GO graph structure [J].
Alexa, Adrian ;
Rahnenfuehrer, Joerg ;
Lengauer, Thomas .
BIOINFORMATICS, 2006, 22 (13) :1600-1607
[4]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[5]   Significance analysis of functional categories in gene expression studies: a structured permutation approach [J].
Barry, WT ;
Nobel, AB ;
Wright, FA .
BIOINFORMATICS, 2005, 21 (09) :1943-1949
[6]   Significance analysis of groups of genes in expression profiling studies [J].
Chen, James J. ;
Lee, Taewon ;
Delongchamp, Robert R. ;
Chen, Tao ;
Tsai, Chen-An .
BIOINFORMATICS, 2007, 23 (16) :2104-2112
[7]   Improving gene set analysis of microarray data by SAM-GS [J].
Dinu, Irina ;
Potter, John D. ;
Mueller, Thomas ;
Liu, Qi ;
Adewale, Adeniyi J. ;
Jhangri, Gian S. ;
Einecke, Gunilla ;
Famulski, Konrad S. ;
Halloran, Philip ;
Yasui, Yutaka .
BMC BIOINFORMATICS, 2007, 8 (1)
[8]  
DOPAZO J, 2008, ARTIF INTELL MED
[9]   Global functional profiling of gene expression [J].
Draghici, S ;
Khatri, P ;
Martins, RP ;
Ostermeier, GC ;
Krawetz, SA .
GENOMICS, 2003, 81 (02) :98-104
[10]   Analysis of sample set enrichment scores: assaying the enrichment of sets of genes for individual samples in genome-wide expression profiles [J].
Edelman, Elena ;
Porrello, Alessandro ;
Guinney, Justin ;
Balakumaran, Bala ;
Bild, Andrea ;
Febbo, Phillip G. ;
Mukherjee, Sayan .
BIOINFORMATICS, 2006, 22 (14) :E108-E116