Effect of differential rotation on the maximum mass of neutron stars: Realistic nuclear equations of state

被引:87
作者
Morrison, IA [1 ]
Baumgarte, TW
Shapiro, SL
机构
[1] Bowdoin Coll, Dept Phys & Astron, Brunswick, ME 04011 USA
[2] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Astron, Urbana, IL 61801 USA
[4] Univ Illinois, NCSA, Urbana, IL 61801 USA
关键词
gravitation; relativity; stars : neutron; stars : rotation;
D O I
10.1086/421897
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The merger of binary neutron stars is likely to lead to differentially rotating remnants. In this paper, we survey several cold nuclear equations of state (EOSs) and numerically construct models of differentially rotating neutron stars in general relativity. For each EOS we tabulate maximum allowed masses as a function of the degree of differential rotation. We also determine effective polytropic indices and compare the maximum allowed masses with those for the corresponding polytropes. We consistently find larger mass increases for the polytropes, but even for the nuclear EOSs we typically find maximum masses 50% higher than the corresponding values for nonrotating (Tolman-Oppenheimer-Volkoff) stars. We evaluate our findings for the six observed binary neutron star (pulsar) systems, including the recently discovered binary pulsar J0737-3039. For each EOS we determine whether their merger could automatically lead to prompt collapse to a black hole, or whether the remnant can be supported against collapse by uniform rotation (possibly as a supramassive star) or differential rotation (possibly as a hypermassive star). For hypermassive stars, delayed collapse to a black hole is likely. For the most recent EOSs we survey the merger remnants can all be supported by rotation against prompt collapse, but their actual fate will depend on the nonequilibrium dynamics of the coalescence event. Gravitational wave observations of coalescing binary neutron stars may be able to distinguish these outcomes-no, delayed, or prompt collapse- and thereby constrain possible EOSs.
引用
收藏
页码:941 / 947
页数:7
相关论文
共 37 条
[1]   Equation of state of nucleon matter and neutron star structure [J].
Akmal, A ;
Pandharipande, VR ;
Ravenhall, DG .
PHYSICAL REVIEW C, 1998, 58 (03) :1804-1828
[2]   Numerical relativity and compact binaries [J].
Baumgarte, TW ;
Shapiro, SL .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2003, 376 (02) :41-131
[3]   On the maximum mass of differentially rotating neutron stars [J].
Baumgarte, TW ;
Shapiro, SL ;
Shibata, M .
ASTROPHYSICAL JOURNAL, 2000, 528 (01) :L29-L32
[4]   GROUND STATE OF MATTER AT HIGH DENSITIES - EQUATION OF STATE AND STELLAR MODELS [J].
BAYM, G ;
PETHICK, C ;
SUTHERLAND, P .
ASTROPHYSICAL JOURNAL, 1971, 170 (02) :299-+
[5]   NEUTRON STAR MATTER [J].
BAYM, G ;
BETHE, HA ;
PETHICK, CJ .
NUCLEAR PHYSICS A, 1971, A175 (02) :225-&
[6]   DENSE BARYON MATTER CALCULATIONS WITH REALISTIC POTENTIALS [J].
BETHE, HA ;
JOHNSON, MB .
NUCLEAR PHYSICS A, 1974, A230 (01) :1-58
[7]   An increased estimate of the merger rate of double neutron stars from observations of a highly relativistic system [J].
Burgay, M ;
D'Amico, N ;
Possenti, A ;
Manchester, RN ;
Lyne, AG ;
Joshi, BC ;
McLaughlin, MA ;
Kramer, M ;
Sarkissian, JM ;
Camilo, F ;
Kalogera, V ;
Kim, C ;
Lorimer, DR .
NATURE, 2003, 426 (6966) :531-533
[8]   RAPIDLY ROTATING NEUTRON-STARS IN GENERAL-RELATIVITY - REALISTIC EQUATIONS OF STATE [J].
COOK, GB ;
SHAPIRO, SL ;
TEUKOLSKY, SA .
ASTROPHYSICAL JOURNAL, 1994, 424 (02) :823-845
[9]   RAPIDLY ROTATING POLYTROPES IN GENERAL-RELATIVITY [J].
COOK, GB ;
SHAPIRO, SL ;
TEUKOLSKY, SA .
ASTROPHYSICAL JOURNAL, 1994, 422 (01) :227-242
[10]   SPIN-UP OF A RAPIDLY ROTATING STAR BY ANGULAR-MOMENTUM LOSS - EFFECTS OF GENERAL-RELATIVITY [J].
COOK, GB ;
SHAPIRO, SL ;
TEUKOLSKY, SA .
ASTROPHYSICAL JOURNAL, 1992, 398 (01) :203-223