An NMR method for studying the kinetics of metal exchange in biomolecular systems

被引:6
作者
Barbieri, R
Hore, PJ
Luchinat, C [1 ]
Pierattelli, R
机构
[1] Univ Florence, Dept Agr Biotechnol, I-50019 Florence, Italy
[2] Univ Florence, Magnet Resonance Ctr, I-50019 Florence, Italy
[3] Univ Oxford, Oxford Ctr Mol Sci, Phys & Theoret Chem Lab, Oxford OX1 3QZ, England
关键词
D O I
10.1023/A:1020245031235
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The kinetics of lanthanide (III) exchange for calcium(II) in the C-terminal EF-hand of the protein calbindin D-9k have been studied by one-dimensional (1D) stopped-flow NMR. By choosing a paramagnetic lanthanide (Ce3+), kinetics in the sub-second range can be easily measured. This is made possible by the fact that (i) the kinetic behaviour of hyperfine shifted signals can be monitored in 1D NMR and (ii) fast repetition rates can be employed because these hyperfine shifted signals relax fast. It is found that the Ce3+-Ca2+ exchange process indeed takes place on a sub-second timescale and can be easily monitored with this technique. As the rate of calcium-cerium substitution was found not to depend on the presence of excess calcium in solution, the kinetics of the process were interpreted in terms of a bimolecular associative mechanism, and the rate constants extracted. Interestingly, the dissociative mechanism involving the apo form of the protein, which is generally assumed for metal ion exchange at protein binding sites, was not in agreement with our data.
引用
收藏
页码:303 / 309
页数:7
相关论文
共 43 条
[1]   MOLECULAR-BASIS FOR COOPERATIVITY IN CA2+ BINDING TO CALBINDIN-D9K - H-1 NUCLEAR-MAGNETIC-RESONANCE STUDIES OF (CD2+)1-BOVINE CALBINDIN-D9K [J].
AKKE, M ;
FORSEN, S ;
CHAZIN, WJ .
JOURNAL OF MOLECULAR BIOLOGY, 1991, 220 (01) :173-189
[2]   Lanthanide-induced pseudocontact shifts for solution structure refinements of macromolecules in shells up to 40 Å from the metal ion [J].
Allegrozzi, M ;
Bertini, I ;
Janik, MBL ;
Lee, YM ;
Lin, GH ;
Luchinat, C .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (17) :4154-4161
[3]   Structural basis for the negative allostery between Ca2+- and Mg2+-binding in the intracellular Ca2+-receptor calbindin D-9k [J].
Andersson, M ;
Malmendal, A ;
Linse, S ;
Ivarsson, I ;
Forsen, S ;
Svensson, LA .
PROTEIN SCIENCE, 1997, 6 (06) :1139-1147
[4]   Protein folding monitored at individual residues during a two-dimensional NMR experiment [J].
Balbach, J ;
Forge, V ;
Lau, WS ;
vanNuland, NAJ ;
Brew, K ;
Dobson, CM .
SCIENCE, 1996, 274 (5290) :1161-1163
[5]   FOLLOWING PROTEIN-FOLDING IN REAL-TIME USING NMR-SPECTROSCOPY [J].
BALBACH, J ;
FORGE, V ;
VANNULAND, NAJ ;
WINDER, SL ;
HORE, PJ ;
DOBSON, CM .
NATURE STRUCTURAL BIOLOGY, 1995, 2 (10) :865-870
[6]   Real-time NMR investigations of triple-helix folding and collagen folding diseases [J].
Baum, J ;
Brodsky, B .
FOLDING & DESIGN, 1997, 2 (04) :R53-R60
[7]   Solution structure of the paramagnetic complex Of the N-terminal domain of calmodulin with two Ce3+ ions by H-1 NMR [J].
Bentrop, D ;
Bertini, I ;
Cremonini, MA ;
Forsen, S ;
Luchinat, C ;
Malmendal, A .
BIOCHEMISTRY, 1997, 36 (39) :11605-11618
[8]   Magnetic susceptibility tenser anisotropies for a lanthanide ion series in a fixed protein matrix [J].
Bertini, I ;
Janik, MBL ;
Lee, YM ;
Luchinat, C ;
Rosato, A .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (18) :4181-4188
[9]  
BERTINI I, 1996, NMR PARAMAGNETIC SUB, P150
[10]   NUCLEAR MAGNETIC-RESONANCE SHIFTS IN SOLUTION DUE TO LANTHANIDE IONS [J].
BLEANEY, B .
JOURNAL OF MAGNETIC RESONANCE, 1972, 8 (01) :91-&