Feedback inhibition controls spike transfer in hybrid thalamic circuits

被引:149
作者
Le Masson, G
Renaud-Le Masson, S
Debay, D
Bal, T [1 ]
机构
[1] Inst Neurobiol Alfred Fessard, CNRS, UPR 2191, Unite Neurosci Integrat & Computat, F-91198 Gif Sur Yvette, France
[2] Univ Bordeaux 2, Inst Francois Magendie, Lab Physiopathol Reseaux Neuronaux Medullaires, INSERM,EPI 9914, F-33077 Bordeaux, France
[3] Univ Bordeaux 1, ENSEIRB, CNRS, UMR 5818,Lab IXL, F-33405 Talence, France
基金
美国国家卫生研究院;
关键词
D O I
10.1038/nature00825
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Sensory information reaches the cerebral cortex through the thalamus, which differentially relays this input depending on the state of arousal(1-5). Such 'gating' involves inhibition of the thalamocortical relay neurons by the reticular nucleus of the thalamus(6-8), but the underlying mechanisms are poorly understood. We reconstructed the thalamocortical circuit as an artificial and biological hybrid network in vitro. With visual input simulated as retinal cell activity, we show here that when the gain in the thalamic inhibitory feedback loop is greater than a critical value, the circuit tends towards oscillations-and thus imposes a temporal decorrelation of retinal cell input and thalamic relay output. This results in the functional disconnection of the cortex from the sensory drive, a feature typical of sleep states. Conversely, low gain in the feedback inhibition and the action of noradrenaline, a known modulator of arousal(4,9,10), converge to increase input-output correlation in relay neurons. Combining gain control of feedback inhibition and modulation of membrane excitability thus enables thalamic circuits to finely tune the gating of spike transmission from sensory organs to the cortex.
引用
收藏
页码:854 / 858
页数:6
相关论文
共 30 条
[1]  
AHLSEN G, 1985, EXP BRAIN RES, V58, P134
[2]  
ASTONJONES G, 1991, PROG BRAIN RES, V88, P501
[3]   What stops synchronized thalamocortical oscillations? [J].
Bal, T ;
McCormick, DA .
NEURON, 1996, 17 (02) :297-308
[4]  
Bal T, 2000, J NEUROSCI, V20, P7478
[5]   DETERMINATION OF TRANSFER RATIO OF CATS GENICULATE NEURONS THROUGH QUASI-INTRACELLULAR RECORDINGS AND RELATION WITH LEVEL OF ALERTNESS [J].
COENEN, AML ;
VENDRIK, AJH .
EXPERIMENTAL BRAIN RESEARCH, 1972, 14 (03) :227-+
[6]   Control of spatiotemporal coherence of a thalamic oscillation by corticothalamic feedback [J].
Contreras, D ;
Destexhe, A ;
Sejnowski, TJ ;
Steriade, M .
SCIENCE, 1996, 274 (5288) :771-774
[7]  
Destexhe A, 1994, J Comput Neurosci, V1, P195, DOI 10.1007/BF00961734
[8]   Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices [J].
Destexhe, A ;
Bal, T ;
McCormick, DA ;
Sejnowski, TJ .
JOURNAL OF NEUROPHYSIOLOGY, 1996, 76 (03) :2049-2070
[9]   NORADRENERGIC MODULATION OF RETINOGENICULATE TRANSMISSION IN THE CAT [J].
FUNKE, K ;
PAPE, HC ;
EYSEL, UT .
JOURNAL OF PHYSIOLOGY-LONDON, 1993, 463 :169-191
[10]  
Kim U, 1998, J NEUROSCI, V18, P9500