Algebraic decay of velocity fluctuations in a confined fluid

被引:81
作者
Hagen, MHJ [1 ]
Pagonabarraga, I [1 ]
Lowe, CP [1 ]
Frenkel, D [1 ]
机构
[1] DELFT UNIV TECHNOL,NL-2628 CJ DELFT,NETHERLANDS
关键词
D O I
10.1103/PhysRevLett.78.3785
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Computer simulations of a colloidal particle suspended in a fluid confined by rigid walls show that, at long times, the velocity correlation function decays with a negative algebraic tail. The exponent depends on the confining geometry, rather than the spatial dimensionality. We can account for the tail by using a simple mode-coupling theory which exploits the fact that the sound wave generated by a moving particle becomes diffusive.
引用
收藏
页码:3785 / 3788
页数:4
相关论文
共 14 条
[1]   DECAY OF VELOCITY AUTOCORRELATION FUNCTION [J].
ALDER, BJ ;
WAINWRIGHT, TE .
PHYSICAL REVIEW A-GENERAL PHYSICS, 1970, 1 (01) :18-+
[2]   Hydrodynamic properties of confined fluids [J].
Bocquet, L ;
Barrat, JL .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1996, 8 (47) :9297-9300
[3]   DIFFUSIVE MOTION IN CONFINED FLUIDS - MODE-COUPLING RESULTS AND MOLECULAR-DYNAMICS CALCULATIONS [J].
BOCQUET, L ;
BARRAT, JL .
EUROPHYSICS LETTERS, 1995, 31 (08) :455-460
[4]  
Boltzmann L., 1872, Sitzungsberichte Akad. Wiss., V66, P275, DOI DOI 10.1007/978-3-322-84986-1_3
[5]  
Bungay P.M., 1973, INT J MULTIPHAS FLOW, V1, P25, DOI DOI 10.1016/0301-9322(73)90003-7
[6]   COVARIANT HYDRODYNAMICS OF FLUID MEMBRANES [J].
CAI, WC ;
LUBENSKY, TC .
PHYSICAL REVIEW LETTERS, 1994, 73 (08) :1186-1189
[7]   ASYMPTOTIC TIME BEHAVIOR OF CORRELATION FUNCTIONS [J].
ERNST, MH ;
HAUGE, EH ;
VANLEEUW.JM .
PHYSICAL REVIEW LETTERS, 1970, 25 (18) :1254-&
[8]   LONG TIME BEHAVIOUR OF VELOCITY AUTO-CORRELATION FUNCTION IN A LORENTZ GAS [J].
ERNST, MH ;
WEYLAND, A .
PHYSICS LETTERS A, 1971, A 34 (01) :39-&
[9]  
HAGEN MA, IN PRESS
[10]  
Happel J., 2012, Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media, V1