Imaging neuronal seal resistance on silicon chip using fluorescent voltage-sensitive dye

被引:53
作者
Braun, D [1 ]
Fromherz, P [1 ]
机构
[1] Max Planck Inst Biochem, Dept Membrane & Neurophys, D-82152 Martinsried, Germany
关键词
D O I
10.1529/biophysj.104.039990
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The electrical sheet resistance between living cells grown on planar electronic contacts of semiconductors or metals is a crucial parameter for bioelectronic devices. It determines the strength of electrical signal transduction from cells to chips and from chips to cells. We measured the sheet resistance by applying AC voltage to oxidized silicon chips and by imaging the voltage change across the attached cell membrane with a fluorescent voltage-sensitive dye. The phase map of voltage change was fitted with a planar core-coat conductor model using the sheet resistance as a free parameter. For nerve cells from rat brain on polylysine as well as for HEK293 cells and MDCK cells on fibronectin we find a similar sheet resistance of 10 MOmega. Taking into account the independently measured distance of 50 nm between chip and membrane for these cells, we obtain a specific resistance of 50 Omegacm that is indistinguishable from bulk electrolyte. On the other hand, the sheet resistance for erythrocytes on polylysine is far higher, at similar to1.5 GOmega. Considering the distance of 10 nm, the specific resistance in the narrow cleft is enhanced to 1500 Omegacm. We find this novel optical method to be a convenient tool to optimize the interface between cells and chips for bioelectronic devices.
引用
收藏
页码:1351 / 1359
页数:9
相关论文
共 41 条
[1]   RAT HIPPOCAMPAL NEURONS IN DISPERSED CELL-CULTURE [J].
BANKER, GA ;
COWAN, WM .
BRAIN RESEARCH, 1977, 126 (03) :397-425
[2]   REVERSIBLE ELECTRICAL BREAKDOWN OF LIPID BILAYER MEMBRANES - CHARGE-PULSE RELAXATION STUDY [J].
BENZ, R ;
BECKERS, F ;
ZIMMERMANN, U .
JOURNAL OF MEMBRANE BIOLOGY, 1979, 48 (02) :181-204
[3]   Fluorescence interference-contrast microscopy of cell adhesion on oxidized silicon [J].
Braun, D ;
Fromherz, P .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1997, 65 (4-5) :341-348
[4]   Fluorescence interferometry of neuronal cell adhesion on microstructured silicon [J].
Braun, D ;
Fromherz, P .
PHYSICAL REVIEW LETTERS, 1998, 81 (23) :5241-5244
[5]   Fast voltage transients in capacitive silicon-to-cell stimulation detected with a luminescent molecular electronic probe [J].
Braun, D ;
Fromherz, P .
PHYSICAL REVIEW LETTERS, 2001, 86 (13) :2905-2908
[6]   OPTICAL MEASUREMENT OF MEMBRANE-POTENTIAL [J].
COHEN, LB ;
SALZBERG, BM .
REVIEWS OF PHYSIOLOGY BIOCHEMISTRY AND PHARMACOLOGY, 1978, 83 :35-88
[7]  
Crank J., 1979, MATH DIFFUSION
[8]   FLUORESCENCE OF AMPHIPHILIC HEMICYANINE DYES WITHOUT FREE DOUBLE-BONDS [J].
EPHARDT, H ;
FROMHERZ, P .
JOURNAL OF PHYSICAL CHEMISTRY, 1993, 97 (17) :4540-4547
[9]   SPECTRA, MEMBRANE-BINDING, AND POTENTIOMETRIC RESPONSES OF NEW CHARGE SHIFT PROBES [J].
FLUHLER, E ;
BURNHAM, VG ;
LOEW, LM .
BIOCHEMISTRY, 1985, 24 (21) :5749-5755
[10]   A NEURON-SILICON JUNCTION - A RETZIUS CELL OF THE LEECH ON AN INSULATED-GATE FIELD-EFFECT TRANSISTOR [J].
FROMHERZ, P ;
OFFENHAUSSER, A ;
VETTER, T ;
WEIS, J .
SCIENCE, 1991, 252 (5010) :1290-1293