A necessary condition of projective synchronization in discrete-time systems of arbitrary dimensions

被引:31
作者
Xu, DL
Chee, CY
Li, CP
机构
[1] Nanyang Technol Univ, Dept Engn Mech, Sch Mech Prod Engn, Singapore 639798, Singapore
[2] Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China
关键词
D O I
10.1016/j.chaos.2004.01.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The necessary condition of projective synchronization in discrete-time systems of arbitrary dimensions is investigated. We found that the determinant of the multiplication of Jacobian matrices of the uncoupled sub-system tends to zero when projective synchronization happens. This finding also provides a theoretical explanation why the conditional Lyapunov exponent becomes null in projective synchronization, observed in the early studies. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:175 / 180
页数:6
相关论文
共 18 条
[1]   Complex dynamics and phase synchronization in spatially extended ecological systems [J].
Blasius, B ;
Huppert, A ;
Stone, L .
NATURE, 1999, 399 (6734) :354-359
[2]   Transforming signals with chaotic synchronization [J].
Carroll, TL ;
Heagy, JF ;
Pecora, LM .
PHYSICAL REVIEW E, 1996, 54 (05) :4676-4680
[3]   CIRCUIT IMPLEMENTATION OF SYNCHRONIZED CHAOS WITH APPLICATIONS TO COMMUNICATIONS [J].
CUOMO, KM ;
OPPENHEIM, AV .
PHYSICAL REVIEW LETTERS, 1993, 71 (01) :65-68
[4]   Chaotic systems with a null conditional Lyapunov exponent under nonlinear driving [J].
GonzalezMiranda, JM .
PHYSICAL REVIEW E, 1996, 53 (01) :R5-R8
[5]   COMMUNICATING WITH CHAOS [J].
HAYES, S ;
GREBOGI, C ;
OTT, E .
PHYSICAL REVIEW LETTERS, 1993, 70 (20) :3031-3034
[6]   EXPERIMENTAL CONTROL OF CHAOS FOR COMMUNICATION [J].
HAYES, S ;
GREBOGI, C ;
OTT, E ;
MARK, A .
PHYSICAL REVIEW LETTERS, 1994, 73 (13) :1781-1784
[7]   Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems [J].
Kocarev, L ;
Parlitz, U .
PHYSICAL REVIEW LETTERS, 1996, 76 (11) :1816-1819
[8]   Stability criterion for projective synchronization in three-dimensional chaotic systems [J].
Li, ZG ;
Xu, DL .
PHYSICS LETTERS A, 2001, 282 (03) :175-179
[9]   Projective synchronization in three-dimensional chaotic systems [J].
Mainieri, R ;
Rehacek, J .
PHYSICAL REVIEW LETTERS, 1999, 82 (15) :3042-3045
[10]   Synchronization-based parameter estimation from time series [J].
Parlitz, U ;
Junge, L ;
Kocarev, L .
PHYSICAL REVIEW E, 1996, 54 (06) :6253-6259