Reassessing the role of region A in Pit1-mediated viral entry

被引:33
作者
Farrell, KB [1 ]
Russ, JL [1 ]
Murthy, RK [1 ]
Eiden, MV [1 ]
机构
[1] NIMH, Unit Mol Virol, Lab Cellular & Mol Regulat, Bethesda, MD 20892 USA
关键词
D O I
10.1128/JVI.76.15.7683-7693.2002
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The mammalian gammaretroviruses gibbon ape leukemia virus (GALV) and feline leukemia virus subgroup B (FeLV-B) can use the same receptor, Pit1, to infect human cells. A highly polymorphic nine-residue sequence within Pit1, designated region A, has been proposed as the virus binding site, because mutations in this region abolish Pit1-mediated cellular infection by GALV and FeLV-B. However, a direct correlation between region A mutations deleterious for infection and loss of virus binding has not been established. We report that cells expressing a Pit1 protein harboring mutations in region A that abolish receptor function retain the ability to bind virus, indicating that Pit1 region A is not the virus binding site. Furthermore, we have now identified a second region in Pit1, comprising residues 232 to 260 (region B), that is required for both viral entry and virus binding. Epitope-tagged Pit1 proteins were used to demonstrate that mutations in region B result in improper orientation of Pit1 in the cell membrane. Compensatory mutations in region A can restore proper orientation and full receptor function to these region B mutants. Based on these results, we propose that region A of Pit1 confers competence for viral entry by influencing the topology of the authentic binding site in the membrane and hence its accessibility to a viral envelope protein. Based on glycosylation studies and results obtained by using N- and C-terminal epitope-tagged Pit1, region A and region B mutants, and the transmembrane helices predicted with the PHD PredictProtein algorithm, we propose a new Pit1 topology model.
引用
收藏
页码:7683 / 7693
页数:11
相关论文
共 38 条