Using component features for face recognition

被引:17
作者
Ivanov, Y [1 ]
Heisele, B [1 ]
Serre, T [1 ]
机构
[1] Honda Res Inst, Boston, MA 02111 USA
来源
SIXTH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION, PROCEEDINGS | 2004年
关键词
D O I
10.1109/AFGR.2004.1301569
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we explore different strategies for classifier combination within the framework of component-based face recognition. In our current system, the gray values of facial components are concatenated to a single feature vector which is then fed into the face recognition classifier As an alternative, we suggest to train recognition classifiers on each of the components separately and then combine their outputs using the following three strategies: voting, sum of outputs, and product of outputs. We also propose a novel Bayesian method which weights the classifier outputs prior to their combination. In experiments on two face databases, we evaluate the different strategies and compare them to our existing recognition system.
引用
收藏
页码:421 / 426
页数:6
相关论文
共 15 条
[1]   A morphable model for the synthesis of 3D faces [J].
Blanz, V ;
Vetter, T .
SIGGRAPH 99 CONFERENCE PROCEEDINGS, 1999, :187-194
[2]   FACE RECOGNITION - FEATURES VERSUS TEMPLATES [J].
BRUNELLI, R ;
POGGIO, T .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1993, 15 (10) :1042-1052
[3]  
Heisele B, 2001, EIGHTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOL II, PROCEEDINGS, P688, DOI 10.1109/ICCV.2001.937693
[4]  
HEISELE B, 2002, ADV NEURAL INFORMATI, V14
[5]  
HUANG J, 2003, 4 C AUD VID BAS BIOM
[6]  
IVANOV Y, 2004, UNPUB ERROR WEIGHTED
[7]  
KAPOOR A, 2004, UNPUB PROBABILISTIC
[8]  
Kittler J., 1997, INT C AUD VID BAS BI
[9]   Example-based object detection in images by components [J].
Mohan, A ;
Papageorgiou, C ;
Poggio, T .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2001, 23 (04) :349-361
[10]  
RIFKIN R, 2000, SVMFU PACKAGE