Photo-Fenton-like and photo-fenton-like oxidation of Procaine Penicillin G formulation effluent

被引:97
作者
Arslan-Alaton, I [1 ]
Gurses, F [1 ]
机构
[1] Tech Univ Istanbul, Fac Civil Engn, Dept Environm Engn, TR-34469 Istanbul, Turkey
关键词
photo-fenton-like oxidation; antibiotic formulation effluent; procaine penicillin G; biodegradability; toxicity;
D O I
10.1016/j.jphotochem.2004.03.016
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the present study, the degradation of Procaine Penicillin G (PPG) formulation effluent by Fenton-like (Fe3+/H2O2) and UV-A light assisted Fenton-like (Fe3+/H2O2/UV-A) processes have been investigated at pH = 3. The effects of different process variables such as the initial Fe3+ and H2O2 concentrations, reaction time and UV-A light on PPG formulation effluent degradation rates have been evaluated. Chemical oxygen demand (COD), 5-day biochemical oxygen demand (BOD5), total organic carbon (TOC) and acute toxicity towards the water flea Daphnia magna were selected as the environmental sum parameters to follow the performance of Fenton-like and photo-Fenton-like advanced oxidation processes on the PPG (Procaine Penicillin G) formulation effluent (COD0 = 600 mg/l; BOD5 53 mg/l; TOC0 = 450 mg/l). At optimum reaction conditions (i.e. [Fe3+] = 1.5 mM and [H2O2] = 25 mM, pH = 3), 56% COD and 42% TOC removal where achieved by the photo-Fenton-like process after 30 min treatment time, whereas the removal efficiencies of the dark Fenton-like process were limited to 44% COD and 35% TOC for the same treatment period. The superiority of the UV-A light-assisted Fenton-like process over the dark Fenton-like reaction was more evident in terms of their effect on biodegradability improvement; the BOD5/COD ratio increased from 0.10 to 0.45 and 0.10 to only 0.24 after application of the photo-Fenton-like and Fenton-like processes, respectively. Based on the results of acute toxicity tests it could be inferred that the photo-Fenton-like process is a suitable method for complete detoxification and partial oxidation of PPG formulation effluent. COD removal efficiency decreased from 56 to 17% for the photo-Fenton-like process and from 44 to 14% for the dark Fenton-like process in the presence of the 1214 mg/l chloride ion (used as a free radical probe compound at acidic pH) after 30 min oxidative treatment, indicating that in both treatment processes the hydroxyl radical ((OH)-O-.) was the major oxidizing agent for PPG. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:165 / 175
页数:11
相关论文
共 31 条
[1]   A COMPILATION OF SPECIFIC BIMOLECULAR RATE CONSTANTS FOR REACTIONS OF HYDRATED ELECTRONS HYDROGEN ATOMS AND HYDROXYL RADICALS WITH INORGANIC AND ORGANIC COMPOUNDS IN AQUEOUS SOLUTION [J].
ANBAR, M ;
NETA, P .
INTERNATIONAL JOURNAL OF APPLIED RADIATION AND ISOTOPES, 1967, 18 (07) :493-&
[2]   Comparison of three advanced oxidation processes for degradation of textile dyes [J].
Aplin, R ;
Waite, TD .
WATER SCIENCE AND TECHNOLOGY, 2000, 42 (5-6) :345-354
[3]   Degradation of commercial reactive dyestuffs by heterogenous and homogenous advanced oxidation processes: a comparative study [J].
Arslan, I ;
Balcioglu, IA .
DYES AND PIGMENTS, 1999, 43 (02) :95-108
[4]   CHEMICAL DEGRADATION OF CHLOROPHENOLS WITH FENTON REAGENT (FE-2++H2O2) [J].
BARBENI, M ;
MINERO, C ;
PELIZZETTI, E ;
BORGARELLO, E ;
SERPONE, N .
CHEMOSPHERE, 1987, 16 (10-12) :2225-2237
[5]   CRITICAL-REVIEW OF RATE CONSTANTS FOR REACTIONS OF HYDRATED ELECTRONS, HYDROGEN-ATOMS AND HYDROXYL RADICALS (.OH/.O-) IN AQUEOUS-SOLUTION [J].
BUXTON, GV ;
GREENSTOCK, CL ;
HELMAN, WP ;
ROSS, AB .
JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 1988, 17 (02) :513-886
[6]   Use of Fenton reagent to improve organic chemical biodegradability [J].
Chamarro, E ;
Marco, A ;
Esplugas, S .
WATER RESEARCH, 2001, 35 (04) :1047-1051
[7]   Catalytic decomposition of hydrogen peroxide by Fe(III) in homogeneous aqueous solution: Mechanism and kinetic modeling [J].
De Laat, J ;
Gallard, H .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1999, 33 (16) :2726-2732
[8]   Comparative study of the oxidation of atrazine and acetone by H2O2/UV, Fe(III)/UV, Fe(III)/H2O2/UV and Fe(II) or Fe(III)/H2O2 [J].
De Laat, J ;
Gallard, H ;
Ancelin, S ;
Legube, B .
CHEMOSPHERE, 1999, 39 (15) :2693-2706
[9]  
*EPA, 1991, 5 EPA
[10]   PHOTOLYSIS OF FE(III)-HYDROXY COMPLEXES AS SOURCES OF OH RADICALS IN CLOUDS, FOG AND RAIN [J].
FAUST, BC ;
HOIGNE, J .
ATMOSPHERIC ENVIRONMENT PART A-GENERAL TOPICS, 1990, 24 (01) :79-89