SirT1-null mice develop tumors at normal rates but are poorly protected by resveratrol

被引:105
作者
Boily, G.
He, X. H.
Pearce, B.
Jardine, K.
McBurney, M. W. [1 ]
机构
[1] Ottawa Hlth Res Inst, Ctr Canc Therapeut, Ottawa, ON K1H 8L6, Canada
基金
加拿大健康研究院;
关键词
oncogenesis; sirtuins; resveratrol; NF-KAPPA-B; PANCREATIC BETA-CELLS; COLON-CANCER GROWTH; LIFE-SPAN; SACCHAROMYCES-CEREVISIAE; CALORIE RESTRICTION; REGULATES SIRT1; MOUSE SKIN; CELLULAR SENESCENCE; INSULIN-SECRETION;
D O I
10.1038/onc.2009.147
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The function of the class III histone deacetylase, Sir2, in promoting lifespan extension is well established in small model organisms. By analogy, SirT1, the mammalian orthologue of Sir2, is a candidate gene to slow down aging and forestall the onset of age-associated diseases. We have used SirT1-null mice to study the function of SirT1 in susceptibility to tumorigenesis. The number of intestinal polyps induced in mice carrying the Apc(min) mutation was unaffected by the SirT1 genotype although the average polyp size was slightly smaller in the SirT1-null animals. Similarly, the presence or absence of SirT1 had no effect on incidence and tumor load of skin papillomas induced by the classical two-stage carcinogenesis protocol. We found that resveratrol topically applied to the skin profoundly reduced tumorigenesis. This chemoprotective effect was significantly reduced but not ablated in SirT1-null mice, suggesting that part of the protection afforded by resveratrol requires the SirT1-encoded protein. Thus, our results suggest that SirT1 does not behave like a classical tumor-suppressor gene but the antitumor activity of resveratrol is mediated at least in part by SirT1. Oncogene (2009) 28, 2882-2893; doi:10.1038/onc.2009.147; published online 8 June 2009
引用
收藏
页码:2882 / 2893
页数:12
相关论文
共 60 条
  • [1] Phosphorylation of HuR by Chk2 regulates SIRT1 expression
    Abdelmohsen, Kotb
    Pullmann, Rudolf, Jr.
    Lai, Ashish
    Kim, Hyeon Ho
    Galban, Stefanie
    Yang, Xiaoling
    Blethrow, Justin D.
    Walker, Mark
    Shubert, Jonathan
    Gillespie, David A.
    Furneaux, Henry
    Gorospe, Myriam
    [J]. MOLECULAR CELL, 2007, 25 (04) : 543 - 557
  • [2] Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration
    Araki, T
    Sasaki, Y
    Milbrandt, J
    [J]. SCIENCE, 2004, 305 (5686) : 1010 - 1013
  • [3] SirT1 Regulates Energy Metabolism and Response to Caloric Restriction in Mice
    Boily, Gino
    Seifert, Erin L.
    Bevilacqua, Lisa
    He, Xiao Hong
    Sabourin, Guillaume
    Estey, Carmen
    Moffat, Cynthia
    Crawford, Sean
    Saliba, Sarah
    Jardine, Karen
    Xuan, Jian
    Evans, Meredith
    Harper, Mary-Ellen
    McBurney, Michael W.
    [J]. PLOS ONE, 2008, 3 (03):
  • [4] Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic β cells
    Bordone, L
    Motta, MC
    Picard, F
    Robinson, A
    Jhala, US
    Apfeld, J
    McDonagh, T
    Lemieux, M
    McBurney, M
    Szilvasi, A
    Easlon, EJ
    Lin, SJ
    Guarente, L
    [J]. PLOS BIOLOGY, 2006, 4 (02): : 210 - 220
  • [5] Mechanism of human SIRT1 activation by resveratrol
    Borra, MT
    Smith, BC
    Denu, JM
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (17) : 17187 - 17195
  • [6] Histone deacetylases in acute myeloid leukaemia show a distinctive pattern of expression that changes selectively in response to deacetylase inhibitors
    Bradbury, C
    Khanim, F
    Hayden, R
    Bunce, CM
    White, DA
    Drayson, MT
    Craddock, C
    Turner, BM
    [J]. LEUKEMIA, 2005, 19 (10) : 1751 - 1759
  • [7] SIRT1 protects against microglia-dependent amyloid-β toxicity through inhibiting NF-κB signaling
    Chen, J
    Zhou, YG
    Mueller-Steiner, S
    Chen, LF
    Kwon, H
    Yi, SL
    Mucke, L
    Li, G
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (48) : 40364 - 40374
  • [8] Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses
    Chen, WY
    Wang, DH
    Yen, RWC
    Luo, JY
    Gu, W
    Baylin, SB
    [J]. CELL, 2005, 123 (03) : 437 - 448
  • [9] Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice
    Cheng, HL
    Mostoslavsky, R
    Saito, S
    Manis, JP
    Gu, YS
    Patel, P
    Bronson, R
    Appella, E
    Alt, FW
    Chua, KF
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (19) : 10794 - 10799
  • [10] Mammalian SIRT1 limits replicative life span in response to chronic genotoxic stress
    Chua, KF
    Mostoslavsky, R
    Lombard, DB
    Pang, WW
    Saito, S
    Franco, S
    Kaushal, D
    Cheng, HL
    Fischer, MR
    Stokes, N
    Murphy, MM
    Appella, E
    Alt, FW
    [J]. CELL METABOLISM, 2005, 2 (01) : 67 - 76