Multiscale modeling of protein transport in silicon membrane nanochannels. Part 1. Derivation of molecular parameters from computer simulations

被引:22
作者
Pricl, Sabrina
Ferrone, Marco
Fermeglia, Maurizio
Amato, Francesco
Cosentino, Carlo
Cheng, Mark Ming-Cheng
Walczak, Robert
Ferrari, Mauro
机构
[1] Univ Trieste, Dept Chem Engn, Mol Simulat Engn Lab, I-34127 Trieste, Italy
[2] Magna Graecia Univ Catanzaro, Dept Expt & Clin Med, I-88100 Catanzaro, Italy
[3] Ohio State Univ, Dept Internal Med, Div Hematol & Oncol, Columbus, OH 43210 USA
[4] Univ Texas, Hlth Sci Ctr, Houston, TX 77030 USA
[5] Univ Texas, MD Anderson Canc Ctr, Houston, TX 77030 USA
[6] Rice Univ, Houston, TX 77005 USA
关键词
multiscale modeling; protein transport; non-Fickian release; nanochannel membranes;
D O I
10.1007/s10544-006-0031-2
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We report in this account our efforts in the development of a novel multiscale simulation tool for integrated nanosystem design, analysis and optimization based on a three-tiered modeling approach consisting of (i) molecular models, (ii) atomistic molecular dynamics simulations, and (iii) dynamical models of protein transport at the continuum scale. In this work we used molecular simulations for the analysis of lysozyme adsorption on a pure silicon surface. The molecular modeling procedures adopted allowed (a) to elucidate the specific mechanisms of interaction between the biopolymer and the silicon surface, and (b) to derive molecular energetic and structural parameters to be employed in the formulation of a mathematical model of diffusion through silicon-based nanochannel membranes, thus filling the existing gap between the nano-and the macroscale.
引用
收藏
页码:277 / 290
页数:14
相关论文
共 25 条
[1]   Molecular simulation to characterize the adsorption behavior of a fibrinogen γ-chain fragment [J].
Agashe, M ;
Raut, V ;
Stuart, SJ ;
Latour, RA .
LANGMUIR, 2005, 21 (03) :1103-1117
[2]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[3]  
CASE DA, 2002, AMBER, V7
[4]   Surface-induced conformational changes in lattice model proteins by Monte Carlo simulation [J].
Castells, Victoria ;
Yang, Shaoxiong ;
Van Tassel, Paul R. .
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2002, 65 (03) :1-031912
[5]   PROTEIN INTERACTIONS AT SOLID-SURFACES [J].
CLAESSON, PM ;
BLOMBERG, E ;
FROBERG, JC ;
NYLANDER, T ;
ARNEBRANT, T .
ADVANCES IN COLLOID AND INTERFACE SCIENCE, 1995, 57 :161-227
[6]   A 2ND GENERATION FORCE-FIELD FOR THE SIMULATION OF PROTEINS, NUCLEIC-ACIDS, AND ORGANIC-MOLECULES [J].
CORNELL, WD ;
CIEPLAK, P ;
BAYLY, CI ;
GOULD, IR ;
MERZ, KM ;
FERGUSON, DM ;
SPELLMEYER, DC ;
FOX, T ;
CALDWELL, JW ;
KOLLMAN, PA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (19) :5179-5197
[7]   Adsorbed protein layers at fluid interfaces: interactions, structure and surface rheology [J].
Dickinson, E .
COLLOIDS AND SURFACES B-BIOINTERFACES, 1999, 15 (02) :161-176
[8]   STRUCTURES AND STABILITIES OF ADSORBED PROTEINS [J].
HAYNES, CA ;
NORDE, W .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1995, 169 (02) :313-328
[9]  
HORBETT TA, 1995, PROTEINS INTERFACES, V2
[10]   COMPARISON OF SIMPLE POTENTIAL FUNCTIONS FOR SIMULATING LIQUID WATER [J].
JORGENSEN, WL ;
CHANDRASEKHAR, J ;
MADURA, JD ;
IMPEY, RW ;
KLEIN, ML .
JOURNAL OF CHEMICAL PHYSICS, 1983, 79 (02) :926-935