Using digital photographs and object-based image analysis to estimate percent ground cover in vegetation plots

被引:13
作者
Luscier, Jason D.
Thompson, William L.
Wilson, John M.
Gorham, Bruce E.
Dragut, Lucian D.
机构
[1] Univ Arkansas, Arkansaas Cooperat Fish & Wildlife Res Unit, Fayetteville, AR 72701 USA
[2] Univ Arkansas, USGS, Arkansas Cooperat Fish & Wildlife Res Unit, Fayetteville, AR 72701 USA
[3] Univ Arkansas, Ctr Adv Spatial Technol, Fayetteville, AR 72701 USA
[4] W Univ Timisoara, Dept Geog, Timisoara 300223, Romania
关键词
D O I
10.1890/1540-9295(2006)4[408:UDPAOI]2.0.CO;2
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Ground vegetation influences habitat selection and provides critical resources for survival and reproduction of animals. Researchers often employ visual methods to estimate ground cover, but these approaches may be prone to observer bias. We therefore evaluated a method using digital photographs of vegetation to objectively quantify percent ground cover of grasses, forbs, shrubs, litter, and bare ground within 90 plots of 2m(2). We carried out object-based image analysis, using a software program called eCognition, to divide photographs into different vegetation classes (based on similarities among neighboring pixels) to estimate percent ground cover for each category. We used the Kappa index of agreement (KIA) to quantify correctly classified, randomly selected segments of all images. Our KIA values indicated strong agreement (> 80%) of all vegetation categories, with an average of 90-96% (SE = 5%) of shrub, litter, forb, and grass segments classified correctly. We also created artificial plots with known percentages of each vegetation category to evaluate the accuracy of software predictions. Observed differences between true cover and eCognition estimates for each category ranged from 1 to 4%. This technique provides a repeatable and reliable way to estimate percent ground cover that allows quantification of classification accuracy.
引用
收藏
页码:408 / 413
页数:6
相关论文
共 21 条