Computing discrepancies of Smolyak quadrature rules

被引:22
作者
Frank, K [1 ]
Heinrich, S [1 ]
机构
[1] UNIV KAISERSLAUTERN, FACHBEREICH INFORMAT, D-67653 KAISERSLAUTERN, GERMANY
关键词
D O I
10.1006/jcom.1996.0020
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In recent years, Smolyak quadrature rules (also called quadratures on hyperbolic cross points or sparse grids) have gained interest as possible competition to number theoretic quadratures for high dimensional problems. A standard way of comparing the quality of multivariate quadrature formulas consists in computing their L(2)-discrepancy. Especially for larger dimensions, such computations are a highly complex task. In this paper we develop a fast recursive algorithm for computing the L(2)-discrepancy (and related quality measures) of general Smolyak quadratures. We carry out numerical comparisons between the discrepancies of certain Smolyak rules and Hammersley and Monte Carlo sequences. (C) 1996 Academic Press, Inc.
引用
收藏
页码:287 / 314
页数:28
相关论文
共 28 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]  
ARONSZAJN N, 1950, T AM MATH SOC, V68, P337, DOI DOI 10.2307/1990404
[3]  
BABENKO KI, 1960, DOKL AKAD NAUK SSSR+, V132, P982
[4]  
BASZENSKI G, 1993, INT S NUM M, V112, P1
[5]  
BASZENSKI G, 1992, NUMERICAL METHODS 9, V105, P1
[6]  
Bonk T., 1994, Adaptive Methods-Algorithms, Theory and Applications, P54
[7]  
Brass H., 1977, Quadraturverfahren
[8]   D-VARIATE BOOLEAN INTERPOLATION [J].
DELVOS, FJ .
JOURNAL OF APPROXIMATION THEORY, 1982, 34 (02) :99-114
[9]  
GRIEBEL M, 1992, ITERATIVE METHODS IN LINEAR ALGEBRA, P263
[10]  
HEINRICH S, 1995, IN PRESS MATH COMP