Linear pattern dynamics in nonlinear threshold systems

被引:101
作者
Rundle, JB [1 ]
Klein, W
Tiampo, K
Gross, S
机构
[1] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
[2] Univ Colorado, Colorado Ctr Chaos & Complex, Boulder, CO 80309 USA
[3] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
[4] Boston Univ, Dept Phys, Boston, MA 02215 USA
[5] Boston Univ, Ctr Computat Sci, Boston, MA 02215 USA
来源
PHYSICAL REVIEW E | 2000年 / 61卷 / 03期
关键词
D O I
10.1103/PhysRevE.61.2418
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Complex nonlinear threshold systems frequently show space-time behavior that is difficult to interpret. We describe a technique based upon a Karhunen-Loeve expansion that allows dynamical patterns to be understood as eigenstates of suitably constructed correlation operators. The evolution of space-time patterns can then be viewed in terms of a "pattern dynamics" that can be obtained directly from observable data. As an example, we apply our methods to a particular threshold system to forecast the evolution of patterns of observed activity. Finally, we perform statistical tests to measure the quality of the forecasts.
引用
收藏
页码:2418 / 2431
页数:14
相关论文
共 54 条