Stromal Cell-Derived Factor 1/CXCR4 Signaling Is Critical for the Recruitment of Mesenchymal Stem Cells to the Fracture Site During Skeletal Repair in a Mouse Model

被引:467
作者
Kitaori, Toshiyuki
Ito, Hiromu [1 ]
Schwarz, Edward A. [2 ]
Tsutsumi, Ryosuke
Yoshitomi, Hiroyuki
Oishi, Shinya
Nakano, Masakazu [3 ]
Fujii, Nobutaka
Nagasawa, Takashi
Nakamura, Takashi
机构
[1] Kyoto Univ, Dept Orthopaed Surg, Grad Sch Med, Kyoto 6068507, Japan
[2] Univ Rochester, Med Ctr, Rochester, NY 14642 USA
[3] Kyoto Prefectural Univ Med, Kyoto, Japan
来源
ARTHRITIS AND RHEUMATISM | 2009年 / 60卷 / 03期
关键词
BONE-MARROW; CXCR4; ANTAGONIST; CHEMOKINE SDF-1; MIGRATION; RECEPTOR; CLONING; GROWTH; ALLOGRAFTS; EXPRESSION; ARTHRITIS;
D O I
10.1002/art.24330
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective. Stromal cell-derived factor 1 (SDF-1; CXCL12/pre-B cell growth-stimulating factor) is a dominant chemokine in bone marrow and is known to be involved in inflammatory diseases, including rheumatoid arthritis. However, its role in bone repair remains unknown. The purpose of this study was to investigate the role of SDF-1 and its receptor, CXCR4, in bone healing. Methods. The expression of SDF-1 during the repair of a murine structural femoral bone graft was examined by real-time polymerase chain reaction and immunohistochemical analysis. The bone graft model was treated with anti-SDF-1 neutralizing antibody or TF14016, an antagonist for CXCR4, and evaluated by histomorphometry. The functional effect of SDF-1 on primary mesenchymal stem cells was determined by in vitro anti in vivo migration assays. New bone formation in an exchanging-graft model was compared with that in the autograft models, using mice partially lacking SDF-1 (SDF-1(+/-)) or CXCR4 (CXCR4(+/-)). Results. The expression of SDF1 messenger RNA was increased during the healing of live bone grafts but was not increased in dead grafts. High expression of SDF-1 protein was observed in the periosteum of the live graft. New bone formation was inhibited by the administration of anti-SDF-1. antibody or TF14016. SDF-1 increased mesenchymal stem cell chemotaxis in vitro in a dose-dependent manner. The in vivo migration study demonstrated that mesenchymal stem cells recruited by SDF-1. participate in endochondral bone repair. Bone formation was decreased in SDF-1(+/-) and CXCR4(+/-) mice and was restored by the graft bones from CXCR4(+/-) mice transplanted into the SDF-1(+/-) femur, but not vice versa. Conclusion. SDF-1 is induced in the periosteum of injured bone and promotes endochondral bone repair by recruiting mesenchymal stem cells to the site of injury.
引用
收藏
页码:813 / 823
页数:11
相关论文
共 39 条
[1]   Stromal cell-derived factor-1α plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury [J].
Abbott, JD ;
Huang, Y ;
Liu, D ;
Hickey, R ;
Krause, DS ;
Giordano, FJ .
CIRCULATION, 2004, 110 (21) :3300-3305
[2]   Recent advances in gene delivery for structural bone allografts [J].
Awad, Hani A. ;
Zhang, Xinping ;
Reynolds, David G. ;
Guldberg, Robert E. ;
O'Keefe, Regis J. ;
Schwarz, Edward M. .
TISSUE ENGINEERING, 2007, 13 (08) :1973-1985
[3]   The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry [J].
Bleul, CC ;
Farzan, M ;
Choe, H ;
Parolin, C ;
ClarkLewis, I ;
Sodroski, J ;
Springer, TA .
NATURE, 1996, 382 (6594) :829-833
[4]   CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment [J].
Burger, JA ;
Kipps, TJ .
BLOOD, 2006, 107 (05) :1761-1767
[5]   Pre-culture period of mesenchymal stem cells in osteogenic media influences their in vivo bone forming potential [J].
Castano-Izquierdo, Harold ;
Alvarez-Barreto, Jose ;
van den Dolder, Juliette ;
Jansen, John A. ;
Mikos, Antonios G. ;
Sikavitsas, Vassilios I. .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2007, 82A (01) :129-138
[6]   Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1 [J].
Ceradini, DJ ;
Kulkarni, AR ;
Callaghan, MJ ;
Tepper, OM ;
Bastidas, N ;
Kleinman, ME ;
Capla, JM ;
Galiano, RD ;
Levine, JP ;
Gurtner, GC .
NATURE MEDICINE, 2004, 10 (08) :858-864
[7]   Chemokine receptor CXCR4-dependent internalization and resecretion of functional chemokine SDF-1 by bone marrow endothelial and stromal cells [J].
Dar, A ;
Goichberg, P ;
Shinder, V ;
Kalinkovich, A ;
Kollet, O ;
Netzer, N ;
Margalit, R ;
Zsak, M ;
Nagler, A ;
Hardan, I ;
Resnick, I ;
Rot, A ;
Lapidot, T .
NATURE IMMUNOLOGY, 2005, 6 (10) :1038-1046
[8]  
Davison CW, 2001, NEW ZEAL MED J, V114, P329
[9]   The use of massive bone allografts in bone tumour surgery of the limb [J].
Donati, D ;
Di Bella, C ;
Angeli, MC ;
Bianchi, G ;
Mercuri, M .
CURRENT ORTHOPAEDICS, 2005, 19 (05) :393-399
[10]   HIV-1 Entry Cofactor: Functional cDNA Cloing of a Seven-Transmembrane, G protein-Coupled Receptor [J].
Feng, Yu ;
Broder, Christopher C. ;
Kennedy, Paul E. ;
Berger, Edward A. .
JOURNAL OF IMMUNOLOGY, 2011, 186 (11) :872-877