On the construction of essentially non-oscillatory finite volume approximations to hyperbolic conservation laws on general triangulations: Polynomial recovery, accuracy and stencil selection

被引:64
作者
Sonar, T
机构
[1] Inst. fur Stromungsmechanik, DLR Göttingen, D-37073 Göttingen
关键词
D O I
10.1016/S0045-7825(96)01060-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We develop essentially non-oscillatory (ENO) finite volume methods on conforming triangulations for the numerical solution of hyperbolic conservation laws. Besides theoretical results concerning the recovery of data from cell averages. we give a description of practicable algorithms for the stencil selection to recover polynomials of arbitrary degree. Extensive numerical tests confirm the accuracy of the methods which can be theoretically predicted.
引用
收藏
页码:157 / 181
页数:25
相关论文
共 38 条
[1]   ON ESSENTIALLY NONOSCILLATORY SCHEMES ON UNSTRUCTURED MESHES - ANALYSIS AND IMPLEMENTATION [J].
ABGRALL, R .
JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 114 (01) :45-58
[3]  
ABGRALL R, 1994, 9420 CAM U CAL
[4]  
ABGRALL R, 1994, MATH COMPUT
[5]  
ABGRALL R, 1993, LECT SERIES
[6]  
ALEXANDROFF P, 1974, GRUND MATH WISS, V1, P45
[7]  
[Anonymous], 1984, APPL MATH SCI
[8]  
[Anonymous], 1991, HDB NUMERICAL ANAL
[9]  
Bruhn G., 1985, MATH METHOD APPL SCI, V7, P470
[10]   TRIANGLE BASED ADAPTIVE STENCILS FOR THE SOLUTION OF HYPERBOLIC CONSERVATION-LAWS [J].
DURLOFSKY, LJ ;
ENGQUIST, B ;
OSHER, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1992, 98 (01) :64-73