Molecular anatomy of the human excision nuclease assembled at sites of DNA damage

被引:67
作者
Reardon, JT [1 ]
Sancar, A [1 ]
机构
[1] Univ N Carolina, Sch Med, Dept Biochem & Biophys, Chapel Hill, NC 27599 USA
关键词
D O I
10.1128/MCB.22.16.5938-5945.2002
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Human nucleotide excision repair is initiated by six repair factors (XPA, RPA, XPC-HR23B, TFIIH, XPF-ERCC1, and XPG) which sequentially assemble at sites of DNA damage and effect excision of damage-containing oligonucleotides. We here describe the molecular anatomy of the human excision nuclease assembled at the site of a psoralen-adducted thymine. Three polypeptides, primarily positioned 5' to the damage, are in close physical proximity to the psoralen lesion and thus are cross-linked to the damaged DNA: these proteins are RPA70, RPA32, and the XPD subunit of TFIIH. While both XPA and XPC bind damaged DNA and are required for XPD cross-linking to the psoralen-adducted base, neither XPA nor XPC is cross-linked to the psoralen adduct. The presence of other repair factors, in particular TFIIH, alters the mode of RPA binding and the position of its subunits relative to the psoralen lesion. Based on these results, we propose that RPA70 makes the initial contact with psoralen-damaged DNA but that within preincision complexes, it is RPA32 and XPD that are in close contact with the lesion.
引用
收藏
页码:5938 / 5945
页数:8
相关论文
共 48 条
[1]   Strong functional interactions of TFIIH with XPC and XPG in human DNA nucleotide excision repair, without a preassembled repairosome [J].
Araújo, SJ ;
Nigg, EA ;
Wood, RD .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (07) :2281-2291
[2]   Initiation of DNA interstrand cross-link repair in humans: the nucleotide excision repair system makes dual incisions 5' to the cross-linked base and removes a 22- to 28-nucleotide-long damage-free strand [J].
Bessho, T ;
Mu, D ;
Sancar, A .
MOLECULAR AND CELLULAR BIOLOGY, 1997, 17 (12) :6822-6830
[3]   Recognition of nonhybridizing base pairs during nucleotide excision repair of DNA [J].
Buschta-Hedayat, N ;
Buterin, T ;
Hess, MT ;
Missura, M ;
Naegeli, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (11) :6090-6095
[4]   Electron crystal structure of the transcription factor and DNA repair complex, core TFIIH [J].
Chang, WH ;
Kornberg, RD .
CELL, 2000, 102 (05) :609-613
[5]   PSORALENS AS PHOTOACTIVE PROBES OF NUCLEIC-ACID STRUCTURE AND FUNCTION - ORGANIC-CHEMISTRY, PHOTOCHEMISTRY, AND BIOCHEMISTRY [J].
CIMINO, GD ;
GAMPER, HB ;
ISAACS, ST ;
HEARST, JE .
ANNUAL REVIEW OF BIOCHEMISTRY, 1985, 54 :1151-1193
[6]   DUAL ROLE OF TFIIH IN DNA EXCISION-REPAIR AND IN TRANSCRIPTION BY RNA-POLYMERASE-II [J].
DRAPKIN, R ;
REARDON, JT ;
ANSARI, A ;
HUANG, JC ;
ZAWEL, L ;
AHN, KJ ;
SANCAR, A ;
REINBERG, D .
NATURE, 1994, 368 (6473) :769-772
[7]  
FRIEDBERG EC, 1995, DNA REPAIR MUTAGENES
[8]   Recognition of DNA adducts by human nucleotide excision repair - Evidence for a thermodynamic probing mechanism [J].
Gunz, D ;
Hess, MT ;
Naegeli, H .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (41) :25089-25098
[9]   Nucleotide excision repair in yeast is mediated by sequential assembly of repair factors and not by a pre-assembled repairosome [J].
Guzder, SN ;
Sung, P ;
Prakash, L ;
Prakash, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (15) :8903-8910
[10]   RECONSTITUTION OF YEAST NUCLEOTIDE EXCISION-REPAIR WITH PURIFIED RAD PROTEINS, REPLICATION PROTEIN-A, AND TRANSCRIPTION FACTOR TFIIH [J].
GUZDER, SN ;
HABRAKEN, Y ;
SUNG, P ;
PRAKASH, L ;
PRAKASH, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (22) :12973-12976