Saturating representation of loop conformational fragments in structure databanks

被引:26
作者
Fernandez-Fuentes, Narcis
Fiser, Andras
机构
[1] Yeshiva Univ Albert Einstein Coll Med, Dept Biochem, Bronx, NY 10461 USA
[2] Yeshiva Univ Albert Einstein Coll Med, Seaver Fdn Ctr Bioinformat, Bronx, NY 10461 USA
关键词
D O I
10.1186/1472-6807-6-15
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Background: Short fragments of proteins are fundamental starting points in various structure prediction applications, such as in fragment based loop modeling methods but also in various full structure build-up procedures. The applicability and performance of these approaches depend on the availability of short fragments in structure databanks. Results: We studied the representation of protein loop fragments up to 14 residues in length. All possible query fragments found in sequence databases (Sequence Space) were clustered and cross referenced with available structural fragments in Protein Data Bank (Structure Space). We found that the expansion of PDB in the last few years resulted in a dense coverage of loop conformational fragments. For each loops of length 8 in the current Sequence Space there is at least one loop in Structure Space with 50% or higher sequence identity. By correlating sequence and structure clusters of loops we found that a 50% sequence identity generally guarantees structural similarity. These percentages of coverage at 50% sequence cutoff drop to 96, 94, 68, 53, 33 and 13% for loops of length 9, 10, 11, 12, 13, and 14, respectively. There is not a single loop in the current Sequence Space at any length up to 14 residues that is not matched with a conformational segment that shares at least 20% sequence identity. This minimum observed identity is 40% for loops of 12 residues or shorter and is as high as 50% for 10 residue or shorter loops. We also assessed the impact of rapidly growing sequence databanks on the estimated number of new loop conformations and found that while the number of sequentially unique sequence segments increased about six folds during the last five years there are almost no unique conformational segments among these up to 12 residues long fragments. Conclusion: The results suggest that fragment based prediction approaches are not limited any more by the completeness of fragments in databanks but rather by the effective scoring and search algorithms to locate them. The current favorable coverage and trends observed will be further accentuated with the progress of Protein Structure Initiative that targets new protein folds and ultimately aims at providing an exhaustive coverage of the structure space.
引用
收藏
页数:12
相关论文
共 40 条
[1]   The universal protein resource (UniProt) [J].
Bairoch, A ;
Apweiler, R ;
Wu, CH ;
Barker, WC ;
Boeckmann, B ;
Ferro, S ;
Gasteiger, E ;
Huang, HZ ;
Lopez, R ;
Magrane, M ;
Martin, MJ ;
Natale, DA ;
O'Donovan, C ;
Redaschi, N ;
Yeh, LSL .
NUCLEIC ACIDS RESEARCH, 2005, 33 :D154-D159
[2]   The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003 [J].
Boeckmann, B ;
Bairoch, A ;
Apweiler, R ;
Blatter, MC ;
Estreicher, A ;
Gasteiger, E ;
Martin, MJ ;
Michoud, K ;
O'Donovan, C ;
Phan, I ;
Pilbout, S ;
Schneider, M .
NUCLEIC ACIDS RESEARCH, 2003, 31 (01) :365-370
[3]  
BOURNE PE, 2004, NUCL ACIDS RES, V32
[4]   Improved protein loop prediction from sequence alone [J].
Burke, DF ;
Deane, CM .
PROTEIN ENGINEERING, 2001, 14 (07) :473-478
[5]   Structural genomics: beyond the Human Genome Project [J].
Burley, SK ;
Almo, SC ;
Bonanno, JB ;
Capel, M ;
Chance, MR ;
Gaasterland, T ;
Lin, DW ;
Sali, A ;
Studier, FW ;
Swaminathan, S .
NATURE GENETICS, 1999, 23 (02) :151-157
[6]   Prediction of local structure in proteins using a library of sequence-structure motifs [J].
Bystroff, C ;
Baker, D .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 281 (03) :565-577
[7]   DSSPcont: continuous secondary structure assignments for proteins [J].
Carter, P ;
Andersen, CAF ;
Rost, B .
NUCLEIC ACIDS RESEARCH, 2003, 31 (13) :3293-3295
[8]   High-throughput computational and experimental techniques in structural genomics [J].
Chance, MR ;
Fiser, A ;
Sali, A ;
Pieper, U ;
Eswar, N ;
Xu, GP ;
Fajardo, JE ;
Radhakannan, T ;
Marinkovic, N .
GENOME RESEARCH, 2004, 14 (10B) :2145-2154
[9]   THE PREDICTED STRUCTURE OF IMMUNOGLOBULIN-D1.3 AND ITS COMPARISON WITH THE CRYSTAL-STRUCTURE [J].
CHOTHIA, C ;
LESK, AM ;
LEVITT, M ;
AMIT, AG ;
MARIUZZA, RA ;
PHILLIPS, SEV ;
POLJAK, RJ .
SCIENCE, 1986, 233 (4765) :755-758
[10]   MODELING THE POLYPEPTIDE BACKBONE WITH SPARE PARTS FROM KNOWN PROTEIN STRUCTURES [J].
CLAESSENS, M ;
VANCUTSEM, E ;
LASTERS, I ;
WODAK, S .
PROTEIN ENGINEERING, 1989, 2 (05) :335-345