Glycogen synthase kinase 3 has a limited role in cell cycle regulation of cyclin D1 levels

被引:42
作者
Yang, Ke
Guo, Yang
Stacey, William C.
Harwalkar, Jyoti
Fretthold, Jonathan
Hitomi, Masahiro
Stacey, Dennis W.
机构
[1] Cleveland Clin Fdn, Lerner Res Inst, Dept Mol Genet, Cleveland, OH 44195 USA
[2] Hosp Univ Penn, Dept Neurol, Philadelphia, PA 19104 USA
关键词
D O I
10.1186/1471-2121-7-33
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Background: The expression level of cyclin D1 plays a vital role in the control of proliferation. This protein is reported to be degraded following phosphorylation by glycogen synthase kinase 3 (GSK3) on Thr-286. We recently showed that phosphorylation of Thr-286 is responsible for a decline in cyclin D1 levels during S phase, an event required for efficient DNA synthesis. These studies were undertaken to test the possibility that phosphorylation by GSK3 is responsible for the S phase specific decline in cyclin D1 levels, and that this event is regulated by the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway which controls GSK3. Results: We found, however, that neither PI3K, AKT, GSK3, nor proliferative signaling activity in general is responsible for the S phase decline in cyclin D1 levels. In fact, the activity of these signaling kinases does not vary through the cell cycle of proliferating cells. Moreover, we found that GSK3 activity has little influence over cyclin D1 expression levels during any cell cycle phase. Inhibition of GSK3 activity by siRNA, LiCl, or other chemical inhibitors failed to influence cyclin D1 phosphorylation on Thr-286, even though LiCl efficiently blocked phosphorylation of beta-catenin, a known substrate of GSK3. Likewise, the expression of a constitutively active GSK3 mutant protein failed to influence cyclin D1 phosphorylation or total protein expression level. Conclusion: Because we were unable to identify any proliferative signaling molecule or pathway which is regulated through the cell cycle, or which is able to influence cyclin D1 levels, we conclude that the suppression of cyclin D1 levels during S phase is regulated by cell cycle position rather than signaling activity. We propose that this mechanism guarantees the decline in cyclin D1 levels during each S phase; and that in so doing it reduces the likelihood that simple over expression of cyclin D1 can lead to uncontrolled cell growth.
引用
收藏
页数:20
相关论文
共 52 条
[1]   Distinct initiation and maintenance mechanisms cooperate to induce G1 cell cycle arrest in response to DNA damage [J].
Agami, R ;
Bernards, R .
CELL, 2000, 102 (01) :55-66
[2]   Ras links growth factor signaling to the cell cycle machinery via regulation of cyclin D1 and the Cdk inhibitor p27(KIP1) [J].
Aktas, H ;
Cai, H ;
Cooper, GM .
MOLECULAR AND CELLULAR BIOLOGY, 1997, 17 (07) :3850-3857
[3]   TRANSFORMING P21(RAS) MUTANTS AND C-ETS-2 ACTIVATE THE CYCLIN D1 PROMOTER THROUGH DISTINGUISHABLE REGIONS [J].
ALBANESE, C ;
JOHNSON, J ;
WATANABE, G ;
EKLUND, N ;
VU, D ;
ARNOLD, A ;
PESTELL, RG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (40) :23589-23597
[4]   Phosphorylation-dependent regulation of cyclin D1 nuclear export and cyclin D1-dependent cellular transformation [J].
Alt, JR ;
Cleveland, JL ;
Hannink, M ;
Diehl, JA .
GENES & DEVELOPMENT, 2000, 14 (24) :3102-3114
[5]   Functional interaction of beta-catenin with the transcription factor LEF-1 [J].
Behrens, J ;
vonKries, JP ;
Kuhl, M ;
Bruhn, L ;
Wedlich, D ;
Grosschedl, R ;
Birchmeier, W .
NATURE, 1996, 382 (6592) :638-642
[6]   The mood-stabilizing agent valproate inhibits the activity of glycogen synthase kinase-3 [J].
Chen, G ;
Huang, LD ;
Jiang, YM ;
Manji, HK .
JOURNAL OF NEUROCHEMISTRY, 1999, 72 (03) :1327-1330
[7]   THE INHIBITION OF GLYCOGEN-SYNTHASE KINASE-3 BY INSULIN OR INSULIN-LIKE GROWTH-FACTOR-1 IN THE RAT SKELETAL-MUSCLE CELL-LINE-L6 IS BLOCKED BY WORTMANNIN, BUT NOT BY RAPAMYCIN - EVIDENCE THAT WORTMANNIN BLOCKS ACTIVATION OF THE MITOGEN-ACTIVATED PROTEIN-KINASE PATHWAY IN L6-CELLS BETWEEN RAS AND RAF [J].
CROSS, DAE ;
ALESSI, DR ;
VANDENHEEDE, JR ;
MCDOWELL, HE ;
HUNDAL, HS ;
COHEN, P .
BIOCHEMICAL JOURNAL, 1994, 303 :21-26
[8]   Inhibition of glycogen synthase kinase 3β activity regulates proliferation of cultured cerebellar granule cells [J].
Cui, H ;
Meng, Y ;
Bulleit, RF .
DEVELOPMENTAL BRAIN RESEARCH, 1998, 111 (02) :177-188
[9]   Inhibition of cyclin D1 phosphorylation on threonine-286 prevents its rapid degradation via the ubiquintin-proteasome pathway [J].
Diehl, JA ;
Zindy, F ;
Sherr, CJ .
GENES & DEVELOPMENT, 1997, 11 (08) :957-972
[10]   Glycogen synthase kinase 3β regulates cyclin D1 proteolysis and subcellular localization [J].
Diehl, JA ;
Cheng, MG ;
Roussel, MF ;
Sherr, CJ .
GENES & DEVELOPMENT, 1998, 12 (22) :3499-3511