Computational strategies for multivariate linear mixed-effects models with missing values

被引:249
作者
Schafer, JL [1 ]
Yucel, RM
机构
[1] Penn State Univ, Dept Stat, University Pk, PA 16802 USA
[2] Penn State Univ, Methodol Ctr, University Pk, PA 16802 USA
[3] Inst Hlth Policy, Boston, MA 02115 USA
[4] Harvard Univ, Sch Med, Boston, MA 02115 USA
基金
美国国家卫生研究院;
关键词
EM algorithm; longitudinal data; Markov chain Monte Carlo; multiple imputation;
D O I
10.1198/106186002760180608
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article presents new computational techniques for multivariate longitudinal or clustered data with missing values. Cur-rent methodology for linear mixed-effects models can accommodate imbalance or missing data in a single response variable, but it cannot handle missing values in multiple responses or additional covariates. Applying a multivariate extension of a popular linear mixed-effects model, we create multiple imputations of missing values for subsequent analyses by a straightforward and effective Markov chain Monte Carlo procedure. We also derive and implement a new EM algorithm for parameter estimation which converges more rapidly than traditional EM algorithms because it does not treat the random effects as "missing data," but integrates them out of the likelihood function analytically. These techniques are illustrated on models for adolescent alcohol use in a large school-based prevention trial.
引用
收藏
页码:437 / 457
页数:21
相关论文
共 42 条
[1]  
[Anonymous], BIOMETRICS
[2]  
[Anonymous], SOCIOLOGICAL METHODO
[3]  
[Anonymous], MARKOV CHAIN MONTE C
[4]  
Arbuckle J., 1995, AMOS USERS GUIDE
[5]  
Bryk A, 1996, HIERARCHICAL LINEAR
[6]   ESTIMATION IN COVARIANCE COMPONENTS MODELS [J].
DEMPSTER, AP ;
RUBIN, DB ;
TSUTAKAWA, RK .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1981, 76 (374) :341-353
[7]   ILLUSTRATION OF BAYESIAN-INFERENCE IN NORMAL DATA MODELS USING GIBBS SAMPLING [J].
GELFAND, AE ;
HILLS, SE ;
RACINEPOON, A ;
SMITH, AFM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1990, 85 (412) :972-985
[8]  
GELMAN G, 1995, BAYESIAN DATA ANAL
[9]  
Graham J W, 1994, NIDA Res Monogr, V142, P13
[10]   PREVENTING ALCOHOL, MARIJUANA, AND CIGARETTE USE AMONG ADOLESCENTS - PEER PRESSURE RESISTANCE TRAINING VERSUS ESTABLISHING CONSERVATIVE NORMS [J].
HANSEN, WB ;
GRAHAM, JW .
PREVENTIVE MEDICINE, 1991, 20 (03) :414-430