Neurotoxicity of amphetamine derivatives is mediated by caspase pathway activation in rat cerebellar granule cells

被引:88
作者
Jiménez, A
Jordà, EG
Verdaguer, E
Pubill, D
Sureda, FX
Canudas, AM
Escubedo, E
Camarasa, J
Camins, A
Pallàs, M
机构
[1] Nucli Univ Pedralbes, Fac Farm, Unitat Farmacol & Farmacognosia, Barcelona 08028, Spain
[2] Univ Rovira & Virgili, Unitat Farmacol, Fac Med & Ciencies Salut, Tarragona, Spain
关键词
methamphetamine; MDMA; apoptosis; caspases; cerebellar granule neurones; cytochrome C;
D O I
10.1016/j.taap.2003.12.017
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The neurotoxic action of the abuse drugs methamphetamine (METH) and 3,4-methylenedioxymethamphetamine (MDMA) on cerebellar granule neurones (CGNs) culture was examined. Treatment for 48 It with METH or MDMA (1-5 mM) induced a higher decrease in viability than 24 h treatment. z.VAD.fmk (100 muM) but not MK-801 nor NBQX recovered control viability values. In both cases, cell death was characterised as apoptotic rather than necrotic by morphology cell observation. Apoptosis measured by flow cytometry indicated an increase in the hypodiploid population after 48 h treatment with METH and MDMA. Apoptosis was reverted by the presence of z.VAD.fmk (100 muM) but not by 10 muM MK-801 or NBQX. Similar results were obtained by analysing nuclear chromatine condensation. These results ruled out excitotoxic participation in amphetamine derivative-induced neurotoxicity in CGNs. Participation of radical oxygen species (ROS) was evaluated using alpha-tocopherol (I - 15 muM) and cytometric studies. The co-treatment with 4 mM METH or MDMA for 48 h partially reverted neurotoxic action and apoptotic features, indicating ROS implication in CGNs death by amphetamine derivatives. Alteration of mitochondrial function induced cytochrome C (Cyt C) release after 48-h treatment with METH and MDMA (4 mM). There was also indication of caspase-3-like activation, measured by immunoanalysis and biochemically. Finally, neurodegenerative action caused by amphetamine derivatives may be prevented by using caspase inhibitors. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:223 / 234
页数:12
相关论文
共 61 条
[1]   Glutamate induced cell death: Apoptosis or necrosis? [J].
Ankarcrona, M .
GLUTAMATE SYNAPSE AS A THERAPEUTICAL TARGET: MOLECULAR ORGANIZATION AND PATHOLOGY OF THE GLUTAMATE SYNAPSE, 1998, 116 :265-272
[2]  
Atabay C, 1996, J NEUROSCI RES, V43, P465
[3]   Glutamate neurotoxicity, oxidative stress and mitochondria [J].
Atlante, A ;
Calissano, P ;
Bobba, A ;
Giannattasio, S ;
Marra, E ;
Passarella, S .
FEBS LETTERS, 2001, 497 (01) :1-5
[4]   Glutamate neurotoxicity in rat cerebellar granule cells involves cytochrome c release from mitochondria and mitochondrial shuttle impairment [J].
Atlante, A ;
Gagliardi, S ;
Marra, E ;
Calissano, P ;
Passarella, S .
JOURNAL OF NEUROCHEMISTRY, 1999, 73 (01) :237-246
[5]   Biochemical pathways of caspase activation during apoptosis [J].
Budihardjo, I ;
Oliver, H ;
Lutter, M ;
Luo, X ;
Wang, XD .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1999, 15 :269-290
[6]  
Cadet JL, 1997, SYNAPSE, V25, P176
[7]   Free radicals and the pathobiology of brain dopamine systems [J].
Cadet, JL ;
Brannock, C .
NEUROCHEMISTRY INTERNATIONAL, 1998, 32 (02) :117-131
[8]   An evaluation of the role of mitochondria in neurodegenerative diseases: mitochondrial mutations and oxidative pathology, protective nuclear responses, and cell death in neurodegeneration [J].
Cassarino, DS ;
Bennett, JP .
BRAIN RESEARCH REVIEWS, 1999, 29 (01) :1-25
[9]   Mitotic signaling by β-amyloid causes neuronal death [J].
Copani, A ;
Condorelli, F ;
Caruso, A ;
Vancheri, C ;
Sala, A ;
Stella, AMG ;
Canonico, PL ;
Nicoletti, F ;
Sortino, MA .
FASEB JOURNAL, 1999, 13 (15) :2225-2234
[10]   METHAMPHETAMINE NEUROTOXICITY INVOLVES VACUOLATION OF ENDOCYTIC ORGANELLES AND DOPAMINE-DEPENDENT INTRACELLULAR OXIDATIVE STRESS [J].
CUBELLS, JF ;
RAYPORT, S ;
RAJENDRAN, G ;
SULZER, D .
JOURNAL OF NEUROSCIENCE, 1994, 14 (04) :2260-2271