Keeping a good pathway down: transcriptional repression of Notch pathway target genes by CSL proteins

被引:184
作者
Lai, EC [1 ]
机构
[1] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA
关键词
D O I
10.1093/embo-reports/kvf170
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
CSL [CBF-1, Su(H), Lag-1]-type transcription factors are the primary effectors of the Notch pathway, a signal transduction cascade that is essential for the development of all metazoan organisms. Interestingly, CSL proteins were originally classified as transcriptional repressors in vertebrates, but as transcriptional activators in model invertebrate organisms. Resolution of this paradox came with the realization that repression and activation by CSL proteins occurs in both systems and that the switch involves recruitment of distinct co-repressor and co-activator complexes. Although CSL proteins appear to utilize a common co-activator complex of largely similar constitution, recent studies have demonstrated that vertebrate and Drosophila CSL interact with a variety of distinct co-repressor complexes. This review highlights differences in composition and similarities in function of different CSL co-repressor complexes, which actively repress Notch pathway target genes in the absence of Notch pathway activity.
引用
收藏
页码:840 / 845
页数:6
相关论文
共 58 条
[1]   Notch signaling: Cell fate control and signal integration in development [J].
Artavanis-Tsakonas, S ;
Rand, MD ;
Lake, RJ .
SCIENCE, 1999, 284 (5415) :770-776
[2]   SUPPRESSOR OF HAIRLESS DIRECTLY ACTIVATES TRANSCRIPTION OF ENHANCER OF SPLIT COMPLEX GENES IN RESPONSE TO NOTCH RECEPTOR ACTIVITY [J].
BAILEY, AM ;
POSAKONY, JW .
GENES & DEVELOPMENT, 1995, 9 (21) :2609-2622
[3]   Hairless promotes stable commitment to the sensory organ precursor cell fate by negatively regulating the activity of the Notch signaling pathway [J].
Bang, AG ;
Bailey, AM ;
Posakony, JW .
DEVELOPMENTAL BIOLOGY, 1995, 172 (02) :479-494
[4]   A notch-independent activity of suppressor of hairless is required for normal mechanoreceptor physiology [J].
Barolo, S ;
Walker, RG ;
Polyanovsky, AD ;
Freschi, G ;
Keil, T ;
Posakony, JW .
CELL, 2000, 103 (06) :957-969
[5]   Default repression and Notch signaling: Hairless acts as an adaptor to recruit the corepressors Groucho and dCtBP to Suppressor of Hairless [J].
Barolo, S ;
Stone, T ;
Bang, AG ;
Posakony, JW .
GENES & DEVELOPMENT, 2002, 16 (15) :1964-1976
[6]   INHIBITION OF THE DNA-BINDING ACTIVITY OF DROSOPHILA SUPPRESSOR OF HAIRLESS AND OF ITS HUMAN HOMOLOG, KBF2/RBP-J-KAPPA, BY DIRECT PROTEIN-PROTEIN INTERACTION WITH DROSOPHILA HAIRLESS [J].
BROU, C ;
LOGEAT, F ;
LECOURTOIS, M ;
VANDEKERCKHOVE, J ;
KOURILSKY, P ;
SCHWEISGUTH, F ;
ISRAEL, A .
GENES & DEVELOPMENT, 1994, 8 (20) :2491-2503
[7]   A role for Groucho tetramerization in transcriptional repression [J].
Chen, GQ ;
Nguyen, PH ;
Courey, AJ .
MOLECULAR AND CELLULAR BIOLOGY, 1998, 18 (12) :7259-7268
[8]   A functional interaction between the histone deacetylase Rpd3 and the corepressor Groucho in Drosophila development [J].
Chen, GQ ;
Fernandez, J ;
Mische, S ;
Courey, AJ .
GENES & DEVELOPMENT, 1999, 13 (17) :2218-2230
[9]   A TRANSCRIPTIONAL CO-REPRESSOR THAT INTERACTS WITH NUCLEAR HORMONE RECEPTORS [J].
CHEN, JD ;
EVANS, RM .
NATURE, 1995, 377 (6548) :454-457
[10]   CtBP, an unconventional transcriptional corepressor in development and oncogenesis [J].
Chinnadurai, G .
MOLECULAR CELL, 2002, 9 (02) :213-224