A method to estimate synaptic conductances from membrane potential fluctuations

被引:80
作者
Rudolph, M [1 ]
Piwkowska, Z [1 ]
Badoual, M [1 ]
Bal, T [1 ]
Destexhe, A [1 ]
机构
[1] CNRS, UNIC, F-91198 Gif Sur Yvette, France
关键词
D O I
10.1152/jn.01223.2003
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
In neocortical neurons, network activity can activate a large number of synaptic inputs, resulting in highly irregular subthreshold membrane potential (V-m) fluctuations, commonly called "synaptic noise." This activity contains information about the underlying network dynamics, but it is not easy to extract network properties from such complex and irregular activity. Here, we propose a method to estimate properties of network activity from intracellular recordings and test this method using theoretical and experimental approaches. The method is based on the analytic expression of the subthreshold V-m distribution at steady state in conductance-based models. Fitting this analytic expression to V-m distributions obtained from intracellular recordings provides estimates of the mean and variance of excitatory and inhibitory conductances. We test the accuracy of these estimates against computational models of increasing complexity. We also test the method using dynamic-clamp recordings of neocortical neurons in vitro. By using an on-line analysis procedure, we show that the measured conductances from spontaneous network activity can be used to re-create artificial states equivalent to real network activity. This approach should be applicable to intracellular recordings during different network states in vivo, providing a characterization of the global properties of synaptic conductances and possible insight into the underlying network mechanisms.
引用
收藏
页码:2884 / 2896
页数:13
相关论文
共 48 条
[1]   Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex [J].
Anderson, JS ;
Carandini, M ;
Ferster, D .
JOURNAL OF NEUROPHYSIOLOGY, 2000, 84 (02) :909-926
[2]   Properties of voltage-gated potassium currents in nucleated patches from large layer 5 cortical pyramidal neurons of the rat [J].
Bekkers, JM .
JOURNAL OF PHYSIOLOGY-LONDON, 2000, 525 (03) :593-609
[3]   SYNAPTIC BACKGROUND ACTIVITY INFLUENCES SPATIOTEMPORAL INTEGRATION IN SINGLE PYRAMIDAL CELLS [J].
BERNANDER, O ;
DOUGLAS, RJ ;
MARTIN, KAC ;
KOCH, C .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (24) :11569-11573
[4]   Visual input evokes transient and strong shunting inhibition in visual cortical neurons [J].
Borg-Graham, LJ ;
Monier, C ;
Frégnac, Y .
NATURE, 1998, 393 (6683) :369-373
[5]  
Braitenberg V., 1998, CORTEX STAT GEOMETRY, DOI [DOI 10.1007/978-3-662-03733-1_27, 10.1007/978-3-662-03733-1]
[6]   Gain modulation from background synaptic input [J].
Chance, FS ;
Abbott, LF ;
Reyes, AD .
NEURON, 2002, 35 (04) :773-782
[7]   Intracellular and computational characterization of the intracortical inhibitory control of synchronized thalamic inputs in vivo [J].
Contreras, D ;
Destexhe, A ;
Steriade, M .
JOURNAL OF NEUROPHYSIOLOGY, 1997, 78 (01) :335-350
[8]  
CONTRERAS D, 1995, J NEUROSCI, V15, P604
[9]   RELATIONS BETWEEN EEG PHENOMENA AND POTENTIALS OF SINGLE CORTICAL CELLS .I. EVOKED RESPONSES AFTER THALAMIC AND EPICORTICAL STIMULATION [J].
CREUTZFELDT, OD ;
WATANABE, S ;
LUX, HD .
ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1966, 20 (01) :1-+
[10]   RELATIONS BETWEEN EEG PHENOMENA AND POTENTIALS OF SINGLE CORTICAL CELLS .2. SPONTANEOUS AND CONVULSOID ACTIVITY [J].
CREUTZFELDT, OD ;
WATANABE, S ;
LUX, HD .
ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1966, 20 (01) :19-+