A new method to realize cluster synchronization in connected chaotic networks

被引:133
作者
Ma, Zhongjun
Liu, Zengrong [1 ]
Zhang, Gang
机构
[1] Shanghai Univ, Coll Sci, Shanghai 200444, Peoples R China
[2] Shijiazhuang Coll, Dept Math, Shijiazhuang 050035, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1063/1.2184948
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, a new method, which constructs a coupling scheme with cooperative and competitive weight-couplings, is used to stabilize arbitrarily selected cluster synchronization patterns with several clusters for connected chaotic networks. By the coupling scheme, a sufficient condition about the global stability of the selected cluster synchronization patterns is derived. That is to say, when the sufficient condition is satisfied, arbitrarily selected cluster synchronization patterns in connected chaotic networks can be achieved via an appropriate coupled scheme. The effectiveness of the method is illustrated by an example.
引用
收藏
页数:9
相关论文
共 22 条
[1]   Generalized synchronization of chaos in noninvertible maps [J].
Afraimovich, V ;
Cordonet, A ;
Rulkov, NF .
PHYSICAL REVIEW E, 2002, 66 (01) :1-016208
[2]  
[Anonymous], 1996, MATRIX ANAL
[3]   Persistent clusters in lattices of coupled nonidentical chaotic systems [J].
Belykh, I ;
Belykh, V ;
Nevidin, K ;
Hasler, M .
CHAOS, 2003, 13 (01) :165-178
[4]  
Belykh I. V., 1995, Radiophysics and Quantum Electronics, V38, P47, DOI 10.1007/BF01051858
[5]   Connection graph stability method for synchronized coupled chaotic systems [J].
Belykh, VN ;
Belykh, IV ;
Hasler, M .
PHYSICA D-NONLINEAR PHENOMENA, 2004, 195 (1-2) :159-187
[6]   Cluster synchronization in three-dimensional lattices of diffusively coupled oscillators [J].
Belykh, VN ;
Belykh, IV ;
Hasler, M ;
Nevidin, KV .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (04) :755-779
[7]   Cluster synchronization modes in an ensemble of coupled chaotic oscillators [J].
Belykh, VN ;
Belykh, IV ;
Mosekilde, E .
PHYSICAL REVIEW E, 2001, 63 (03) :362161-362164
[8]   The synchronization of chaotic systems [J].
Boccaletti, S ;
Kurths, J ;
Osipov, G ;
Valladares, DL ;
Zhou, CS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (1-2) :1-101
[9]   Synchronization is enhanced in weighted complex networks [J].
Chavez, M ;
Hwang, DU ;
Amann, A ;
Hentschel, HGE ;
Boccaletti, S .
PHYSICAL REVIEW LETTERS, 2005, 94 (21)
[10]  
HENRY DIA, 1996, PHYS REV E, V53, P4528