Entanglement as a precondition for secure quantum key distribution -: art. no. 217903

被引:269
作者
Curty, M [1 ]
Lewenstein, M
Lütkenhaus, N
机构
[1] Univ Erlangen Nurnberg, Inst Theoret Phys, Quantum Informat Theory Grp, D-91058 Erlangen, Germany
[2] Leibniz Univ Hannover, Inst Theoret Phys, D-31067 Hannover, Germany
关键词
D O I
10.1103/PhysRevLett.92.217903
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We demonstrate that a necessary precondition for an unconditionally secure quantum key distribution is that both sender and receiver can use the available measurement results to prove the presence of entanglement in a quantum state that is effectively distributed between them. One can thus systematically search for entanglement using the class of entanglement witness operators that can be constructed from the observed data. We apply such analysis to two well-known quantum key distribution protocols, namely, the 4-state protocol and the 6-state protocol. As a special case, we show that, for some asymmetric error patterns, the presence of entanglement can be proven even for error rates above 25% (4-state protocol) and 33% (6-state protocol).
引用
收藏
页码:217903 / 1
页数:4
相关论文
共 25 条
[1]   Equivalence between two-qubit entanglement and secure key distribution -: art. no. 167901 [J].
Acín, A ;
Masanes, L ;
Gisin, N .
PHYSICAL REVIEW LETTERS, 2003, 91 (16) :167901-167901
[2]  
ACIN A, QUANTPH0310054
[3]  
ACIN A, QUANTPH0303009
[4]  
Bennett C.H., 1984, P IEEE INT C COMP SY, P175, DOI DOI 10.1016/J.TCS.2014.05.025
[5]   QUANTUM CRYPTOGRAPHY WITHOUT BELL THEOREM [J].
BENNETT, CH ;
BRASSARD, G ;
MERMIN, ND .
PHYSICAL REVIEW LETTERS, 1992, 68 (05) :557-559
[6]   Optimal eavesdropping in quantum cryptography with six states [J].
Bruss, D .
PHYSICAL REVIEW LETTERS, 1998, 81 (14) :3018-3021
[7]   Tomographic quantum cryptography: Equivalence of quantum and classical key distillation [J].
Bruss, D ;
Christandl, M ;
Ekert, A ;
Englert, BG ;
Kaszlikowski, D ;
Macchiavello, C .
PHYSICAL REVIEW LETTERS, 2003, 91 (09)
[8]   Quantum privacy amplification and the security of quantum cryptography over noisy channels [J].
Deutsch, D ;
Ekert, A ;
Jozsa, R ;
Macchiavello, C ;
Popescu, S ;
Sanpera, A .
PHYSICAL REVIEW LETTERS, 1996, 77 (13) :2818-2821
[9]   QUANTUM CRYPTOGRAPHY BASED ON BELL THEOREM [J].
EKERT, AK .
PHYSICAL REVIEW LETTERS, 1991, 67 (06) :661-663
[10]   Quantum cryptography on noisy channels: Quantum versus classical key-agreement protocols [J].
Gisin, N ;
Wolf, S .
PHYSICAL REVIEW LETTERS, 1999, 83 (20) :4200-4203